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A path planning problem for a heterogeneous vehicle is considered. Such a vehicle consists of two parts which have the
ability to move individually, but one of them has a shorter range and is therefore required to keep in a close distance to the
main vehicle. The objective is to devise an optimal path of minimal length under the condition that at least one part of the
heterogeneous system visits all desired waypoints exactly once. Two versions of the problem are considered. One assumes
that the order in which the waypoints are visited is known a priori. In such a case we show that the optimal path can be
found by solving a mixed-integer second-order cone problem. The second version assumes that the order in which the
waypoints are visited is not known a priori, but can be optimized so as to shorten the length of the path. Two approaches to
solve this problem are presented and evaluated with respect to computational complexity.
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1. Introduction

Vehicle routing problems have become widely
investigated in recent days. The main interest in
these problems stems from the need for cost reduction
of entire logistic operations. Such cost reduction can
be achieved by optimizing the trajectories of vehicles
performing services, thus minimizing mainly the amount
of fuel expenditures. Another benefit of such optimization
is a decreased travelling time, so a logistic company can
perform more deliveries during the same operational time.
Routing problems for single vehicle systems have been
widely studied. Usually, when an optimal solution needs
to be found for such problems, the travelling salesman
problem (TSP) is often considered, and it is solved
as a mixed-integer problem (Applegate, 2006; Miller
et al., 1960).

Recently, solving path planning problems for a single
vehicle system has become insufficient. Many companies
operate several vehicles which need to be coordinated.
In many applications, these vehicles are arranged in
a heterogeneous fashion. This heterogeneous vehicle
consists of several parts which can be detached from
the main vehicle and perform tasks separately. After
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performing individual tasks, these vehicles must return
back to the main vehicle for refuelling or for resupplying.
Many such applications can be found in the work of Hoff
et al. (2010). There the authors mention the strategy of
food delivery in island countries, where a ship travels
with a supply car on board. This supply car, after
disembarking from the ship, makes routes on the island
delivering goods, and then returns back to the ship for
resupplying. The referenced survey also describes soft
drink distribution by Coca-Cola. This company employs
vehicles with large capacities to deliver goods over long
distances before using small vehicles to deliver drinks to
specific locations. This arrangement shows a decrease
in the overall cost of operation. A similar application
is discussed by Fagerholt (1999), but with the focus on
maritime industry.

Another application of such a heterogeneous
multi-vehicle system is garbage collection. A study
was published by Tung and Pinnoi (2000) concerning
garbage collection in the city of Hanoi. Here, multiple
vehicles with different capacities must be coordinated
together in order to minimize the cost of operation, while
collecting all garbage in designated areas in the city. Path
planning for a heterogeneous vehicle was also considered
by Mathew et al. (2014), who address the problem of
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goods delivery in an urban location where a truck is
carrying a quadcopter. This quadcopter then carries
specific packages to desired locations, thus speeding up
the process of delivery. The authors show that solving
such an optimization problem is hard. Thus they again
resort to a heuristic solver to arrive at a solution to the
path planning problem.

In all the aforementioned references the authors
focus on heuristic approaches to find the path for
such heterogeneous vehicles. Heuristic solutions are
in many cases easy to find, but there is no guarantee
that the resulting solution is the best one, i.e., optimal.
Furthermore, there is no clue how far the solution found
by heuristics is from the true optimal solution.

A paper on finding an optimal solution to a
path planning problem for heterogeneous vehicles was
published by Garone et al. (2012), who consider a
heterogeneous vehicle consisting of two separate vehicles:
a ship and a helicopter. In this setting, the ship is assumed
to have an unlimited range of operation but moves
slowly compared with the helicopter. The helicopter,
on the other hand, is fast but has a limited range of
operation due to a limited fuel tank. The objective is
to devise an optimal path for the heterogeneous vehicle
by calculating coordinates of take-off and landing points
for the helicopter, whose objective is to visit intermediate
waypoints. The authors proposed to formulate a
mixed-integer non-linear problem (MI-NLP) for finding
an optimal path. The MI-NLP formulation considered
has several disadvantages. First, the order waypoints to
be visited are assumed to be known a priori. Second,
the MI-NLP optimization problem is difficult to solve and
scales badly with an increasing number of waypoints. The
authors show that even for a small number of waypoints
(n = 7) the time to solve such an MI-NLP problem
reaches several hours. The authors therefore devise a set
of heuristic rules, thus arriving at a suboptimal solution.
These heuristic rules were still devised for a fixed order of
points.

A computationally tractable mixed-integer
second-order cone programming (MI-SOCP) formulation
for finding an optimal path for heterogeneous vehicles
was proposed in our earlier work (Klaučo et al., 2014).
The MI-SOCP formulation is much more favorable
in terms of computational time and allows devising an
optimal path even for a larger number of points (n = 100).
In this paper we extend our previous work and show
how to devise the optimal path in the situation where
the order of waypoints is not known a priori, but can be
optimized so as to reduce the overall mission time. Two
strategies to achieve such a goal are presented. The truly
optimal scenario solves an extended MI-SOCP problem
with additional binary variables, which optimize the
ordering of waypoints. Moreover, a suboptimal strategy
based on a TSP ordering is designed which neglects the

heterogeneity of the vehicle. An extensive case study is
presented to evaluate the induced loss of optimality.

The paper is organized as follows. First, we
formally state the two main problems to be solved
in Section 2. Then, in Section 3 we show how to
solve the path-planning problem for a known ordering
of waypoints. In particular, we first review the
MI-NLP formulation of Garone et al. (2012) before
stating the computationally more favorable MI-SOCP
formulation, followed by a discussion of possible
real-world extensions. The content of this section is based
on our previous work (Klaučo et al., 2014). The main
novel results are summarized in Section 4, where we show
two strategies to devise the optimal plan for the situation
where the ordering of waypoints is optimized. The paper
is concluded by an extensive case study in Section 5,
which discusses computational aspects and suboptimality.

2. Problem statement

The main obstacle in solving such path planning problems
is the order of locations which one of the vehicles must
visit. In this paper we tackle not only the problem of
finding an optimal path for a heterogeneous vehicle when
the order of points is known, but we also propose a way to
obtain an optimal order of points.

We consider a heterogeneous vehicle system that
consists of a carrier vehicle with a low maximal speed
and a large range, and an agile vehicle (e.g., a helicopter)
with a large maximal speed, but with a limited range. In
particular, the carrier is assumed to move with a constant
velocity vc (the suffix c denotes the carrier) and has an
unlimited range. The agile vehicle either rests on the
carrier or is airborne. While airborne, the helicopter is
assumed to travel at a constant velocity vh and its range
is limited by th,max, i.e., the time the helicopter can be
airborne without refuelling. Whenever the helicopter rests
on the carrier, refuelling to maximum capacity takes place.
We assume that such refuelling is instantaneous.

The heterogeneous vehicle starts at the point qs and is
required to visit each point q1, . . . , qn exactly once, after
which the fleet proceeds to the final destination qf. While
the starting and the finishing points have to be visited by
the ship, the intermediate points can also be visited by
the agile part of the vehicle. Moreover, the agile vehicle
can visit multiple intermediate points during one airborne
phase. The objective is to devise an optimal route which
minimizes the mission time, while taking into account
constraints on the maximal range of the agile vehicle.

Formally, we can state this problem as follows.

Problem 1. Given are an ordered set of intermediate
points qi ∈ R

2, i = 1, . . . , n, a starting point qs ∈ R
2, a

final point qf ∈ R
2, the carrier’s speed vc, the helicopter’s

speed vh, and the helicopter’s range. Determine
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• index sets I1, . . . , Im with Ii ⊆ {1, . . . , n} denoting
which points qi the helicopter visits during one
flyover,

• a set of takeoff and landing points {τi, �j} such that
the helicopter lifts off from the carrier at position
τi, visits points qi, . . . , qj (indexed by Ii), before
landing at the carrier at position �j ,

such that

• the mission completion time is minimized,

• for each takeoff/landing phase, the associated index
set Ii contains only indices of points qi which are in
the helicopter’s range,

• each intermediate point qi is visited exactly once in
the order i = 1, . . . , n, i.e., the index sets Ii are
mutually exclusive Ij ∩ Ik = ∅ for all j �= k, while
their union satisfies

⋃
i Ii = {1, . . . , n}.

Note that while the helicopter is airborne and visiting
points qi, . . . , qj , the carrier follows the straight path
from τi to �j . The minimal number of takeoff/landing
sequences is thereforem = 1 (when the helicopter’s range
allows visiting all points q1, . . . , qn in one shot), while the
maximum is m = n.

To give the reader a flavor of what the individual
variables in Problem 1 represent, consider the case
depicted in Fig. 1. Here, the task is to visit 5 points
q1, . . . , q5, starting at qs and finishing at qf. In the
particular scenario depicted in Fig. 1 the carrier follows
the route qs → τ1 → �1 → τ2 → �4 → τ5 →
�5 → qf. When at position τ1, the helicopter lifts off
and visits q1 alone (hence I1 = {1}) before returning
to the carrier at point �1 for refuelling. From here the
two vehicles continue together until point τ2 is reached.
Here, the helicopter lifts off again and, this time, visits
points q2, q3, q4, which corresponds to I2 = {2, 3, 4}.
Meanwhile, the carrier continues directly to �4, where it
meets the helicopter. The platoon then continues to point
τ5, where the helicopter separates again to visit q5 (with
I5 = {5}), before returning to the carrier, which in the
meantime travelled to �5. From there the heterogeneous
vehicle returns to the port located at qf.

Note that in Problem 1 we assume that the order
of points is given. Such a situation frequently occurs in
rescue operations, where the ordering represents priorities
in which the targets must be rescued. However, in a
different type of applications the ordering of intermediate
points can change if it allows shortening the mission time.
Therefore in this paper we also address the following
extension of Problem 1.

Problem 2. Given are a starting point qs, a final location
qf and a intermediate points qi, i = 1, . . . , n. Determine
an optimal route of a minimal length and an optimal

f1 s1

f2

s4

f5

qs qf

q1

q2

q3

q4

q5

τ1 �1 τ2

�4

τ5

�5

Fig. 1. Illustration of an optimal path for the heterogeneous ve-
hicle. τi and �j denote the takeoff and landing points for
the helicopter, respectively. The solid line shows the tra-
jectory of the carrier and the dashed lines visualize the
path of the helicopter that needs to visit points q1, . . . , q5
in consecutive order. Due to a restricted range, however,
the helicopter needs to perform intermediate stops for
refuelling.

ordering in which the points qi are visited such that
the heterogeneous vehicle visits all intermediate points
exactly once.

While in Problem 1 the index i in qi refers to the
fixed order of points visited by the agile part of the
heterogeneous vehicle, in Problem 2 these indices are
decision variables and are optimized.

3. Solution to Problem 1

3.1. Non-linear formulation. In this section we
review the mixed-integer non-linear formulation of
Problem 1 as suggested by Garone et al. (2012). Let us
consider a binary matrix α with m rows corresponding
to the airborne phases and to the sets I1, . . . , Im. Then
αi,j = 1 is interpreted as follows: During the k-th
airborne phase, the helicopter sequentially flies over
points qi, . . . , qj without any intermediate landings. In
the example shown in Fig. 1 the matrix would take the
following form:

α =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
. (1)

To guarantee that each point qi is visited exactly
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once, the following constraints must be added:

k∑

i=1

n∑

j=k

αi,j = 1, k = 1, . . . , n. (2)

It is easy to verify that α of (1) satisfies (2) and
corresponds to three airborne phases: the first one visits
only q1 (and gives I1 = {1}), the second takeoff covers
q2, . . . , q4 (which corresponds to I2 = {2, 3, 4}), and in
the last run the helicopter visits q5 alone with I5 = {5}.
The advantage of the introduced semantics forα, enforced
by (2), is that at most n elements of α can be equal to
one. This allows us to somehow mitigate the exponential
complexity of the resulting mixed-integer formulation.

With each takeoff/landing sequence we furthermore
associate the flyover time fi,j ≥ 0 as the time required
for the helicopter to travel from the corresponding takeoff
point τi via qi, . . . , qj to the touchdown point �j . The time
spent airborne is restricted by the helicopter’s range by

αi,jfi,j ≤ th,max. (3)

The multiplication by αi,j ∈ {0, 1} guarantees that the
constraint will only become active if αi,j = 1, which
corresponds to selection of qi, . . . , qj as flyover points. If
αi,j = 0, the constraint is inactive. Moreover, the flyover
time must be selected such that the carrier can travel from
τi to �j for rendezvous. Assuming the carrier moves along
a straight line at a fixed speed vc, the following constraint
must be satisfied:

αi,j‖τi − �j‖ ≤ vcfi,j . (4)

Otherwise, the helicopter would arrive to the rendezvous
point �j before the carrier and could thus run out of fuel
while waiting.

Finally, the flyover time is bounded from above by
the time it takes the helicopter to travel the total distance
from τi via qi, . . . , qj to �j at a fixed speed vh, i.e.,

αi,j (‖τi − qi‖+ di,j + ‖qj − �j‖) ≤ vhfi,j , (5)

where di,j denotes the total distance of the
piecewise-linear path of minimal length connecting
points qi, . . . , qj , i.e.,

di,j =

j−1∑

k=i

‖qk − qk+1‖. (6)

Note that the matrix d ∈ R
n×n with entries di,j as in (6)

can be pre-computed off-line, and is treated as a matrix of
constants since positions of points qi are fixed a priori.

The total mission time tm to be minimized is
composed of four parts:

(a) the time the fleet travels from the starting point qs to
the first takeoff point τ1, represented by (1/vc)‖qs −
τ1‖,

(b) the time consumed by the carrier alone to travel from
one takeoff point to the next landing point, given by∑n

i=1

∑n
j=i fi,j ,

(c) the time the carrier and the helicopter travel together
from the previous landing point to the next takeoff
point, i.e.,

∑n
i=1

∑n−1
j=i si,j , where si,j ≥ 0 relates

to α via
αi,j‖�j − τj+1‖ ≤ vcsi,j , (7)

(d) the time of the fleet travel from the last landing point
to the final destination at qf, i.e., (1/vc)‖�n − qf‖.

Hence the mission time is given by

tm =
1

vc
(‖qs − τ1‖+ ‖�n − qf‖)

+

n∑

i=1

n∑

j=i

fi,j +

n∑

i=1

n−1∑

j=i

si,j . (8)

Then a solution to Problem 1 can be obtained by
solving an optimization problem of the form

min tm subject to (2)−(7), (9)

with decision variables α ∈ {0, 1}n×n, f ∈ R
n×n,

fi,j ≥ 0, s ∈ R
n×n, si,j ≥ 0, τ ∈ R

2×n, and � ∈ R
2×n.

Note that each column of τ and of � denotes coordinates
of the takeoff and landing points in the two-dimensional
Euclidean space. It is important to notice that, since fi,j
and si,j are minimized by (8), if αi,j = 0 is an optimal
solution to (9), then fi,j = 0 and si,j = 0 are feasible
optimal choices. This follows from (4), (5), and (7), which
result in fi,j ≥ 0 (and si,j ≥ 0) for αi,j = 0.

The problem (9) is a mixed-integer nonlinear
programming one. The integer component is due to the
presence of binary decision variables α. Non-linearity
is due to products between αi,j and continuous decision
variables in (3), (4), (5), and (7).

Remark 1. Once the optimal solution to (9) is
obtained, the equivalence between α and index sets I
from Problem 1 can be recovered as follows: Let i be the
index of a row of α that contains at least one non-zero
entry. Then Ii = {i, . . . , j}, where j is the index of the
column for which αi,j = 1. Due to (2), the index j will
be a singleton for each i.

Remark 2. The problem (9) is always feasible. In the
worst case, each flyover point qi is individually visited
by navigating the carrier to its neighborhood from where
the point can be reached by the agile part of the vehicle.
This scenario corresponds to α being an identity matrix.
Feasibility stems from the fact that the carrier’s range
is assumed to be unlimited, and because there are no
constraints on the overall mission time.
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3.2. Mixed-integer SOCP formulation of Problem 1.
The main limitation of the mixed-integer non-linear
programming (MI-NLP) formulation of the optimization
problem (9) stems from its computational complexity.
Specifically, Garone et al. (2012) demonstrated that the
problem is solvable, in reasonable time, just for a small
number of intermediate points qi, i.e., for a small value of
n. Specifically, the largest case reported in the reference
was for n = 7. In this section we show how to equiv-
alently reformulate the MI-NLP (9) as a mixed-integer
problem with second-order cone constraints (MI-SOCP),
which can be solved efficiently for hundreds of points.
Although MI-SOCP problems are non-convex due to the
presence of integer variables, once these integers are fixed
in a branch-and-bound algorithm, the problem becomes a
convex SOCP. On the other hand, in MI-NLP problems
even the “inner” problems are non-convex.

We start by reminding that the non-trivial part of (9)
covers non-linear constraints where various decision
variables multiply each other. However, a closer look
at (3)−(5) and (7) reveals that such non-linear terms only
involve multiplication between a binary variable αi,j and
a convex function. Take (3) as an example. The constraint
can be equivalently written as a logic relation of the form

(αi,j = 1) ⇒ fi,j ≤ th,max. (10)

Note that, regardless of the value of αi,j , the flyover time
fi,j is assumed to be lower-bounded by fi,j ≥ 0 for any
combination of i and j. Similarly, (4) can be written as

(αi,j = 1) ⇒ ‖τi − �j‖ ≤ vcfi,j, (11)

which introduces a strictly positive lower bound on fi,j
if αi,j = 1. Note that for αi,j = 0 the constraint (4)
yields 0 ≤ vcfi,j , which is again equivalent to the lower
bound fi,j ≥ 0. Continuing along the same lines, (5) is
equivalent to

(αi,j = 1) ⇒ (‖τi − qi‖+ di,j + ‖qj − �j‖) ≤ vhfi,j ,
(12)

and (7) can be written as

(αi,j = 1) ⇒ ‖�j − τj+1‖ ≤ vcsi,j , (13)

with the sailing time being lower-bounded by si,j ≥ 0.
The advantage of rewriting (3)−(5) and (7) as a set of

implication rules in (10)−(13) is that they can be further
simplified into a set of constraints that are convex in
decision variables αi,j , fi,j , si,j , τi and �j using basic
rules of propositional logic (Williams, 1993).

Lemma 1. Consider a binary variable δ ∈ {0, 1},
continuous variables x ∈ R

m, and an arbitrary function
g : Rm → R. Then

(δ = 1) ⇒ g(x) ≤ 0 (14)

iff
g(x) ≤ M(1− δ) (15)

is satisfied for some constant M .

Proof. We start by noting that, given two logic statements
Y1 and Y2,

(Y1 ⇒ Y2) ⇔ (Y 1 ∨ Y2), (16)

where Y 1 is the negation of Y1 and ∨ is the logic “or”
operator. Moreover, it is easy to verify that

([δ = 1] ∨ [g(x) ≤ 0]) ⇔ (g(x) ≤ Mδ) . (17)

Then (15) follows directly from (16) and (17) by
considering the negation of δ as δ = 1 − δ (recall that
δ is a binary variable). �

Applying Lemma 1 to (10) allows us to rewrite the
logic implication as

fi,j − th,max ≤ M(1− αi,j), (18)

with the lower bound fi,j ≥ 0. Note that (18) is linear
in the continuous decision variables fi,j and in the binary
variables αi,j . Similarly, (11)−(13) can be converted into

‖τi − �j‖ − vcfi,j ≤ M(1− αi,j), (19a)

(‖τi − qi‖+ di,j + ‖qj − �j‖)− vhfi,j

≤ M(1− αi,j), (19b)

‖�j − τj+1‖ − vcsi,j ≤ M(1− αi,j). (19c)

Note that all constraints in the (19) are convex in
corresponding decision variables. In particular, due
to employing Euclidean norms, (19) can be written as
a set of second-order cone constraints (see Boyd and
Vandenberghe, 2009).

The search for optimal takeoff-landing sequences
from (9) can thus be equivalently formulated as

min
α,f,s,τ,�

tm (20a)

subject to (18)−(19), (20b)

fi,j ≥ 0, si,j ≥ 0, αi,j ∈ {0, 1}, (20c)

with tm as in (8) and the constraints imposed for each
i, j ∈ {0, . . . , n}. The problem (20) is a mixed-integer
second-order cone program that can be solved, e.g.
by the Gurobi solver (Gurobi Optimization, 2013),
which employs the branch-and-cut method to efficiently
eliminate infeasible combinations of binary variables, thus
avoiding exploration of an exponential number of cases.

Remark 3. It is important to note that (20) is a non-
conservative reformulation of (9). If αi,j = 1, then the
constraints of (20) are the same as in (9), which can be
seen from (18)−(19). If αi,j = 0, then the corresponding
optimal values of fi,j and si,j will be zero because they
are minimized in (8) and lower-bounded by zero in (20c).
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To solve (20) as efficiently as possible, the value of
M in (18) and (19) has to be chosen as low as possible.
As noted, e.g., by Kvasnica (2008), non-tight values of
the M constants can easily increase the computational
time of (20) by several orders of magnitude. Therefore,
it is important to derive the tightest possible values of M
employed in (18) and (19). As noted by Williams (1993),
the tightest value of M that can be employed in (15) is
given by

M = max
x∈Ω

g(x), (21)

where Ω is the (bounded) domain of the function g(·).
In (18), such an M is trivially given as M = th,max.
In (19a) the lowest value of M is

M = max
τi,�j,fi,j

(‖τi − �j‖ − vcfi,j). (22)

Since the function ‖τi − �j‖ − vcfi,j is convex in
τi, �j , and in fi,j , the maximum is attained at one of the
vertices of the corresponding domain Ω = Ωτ ×Ω�×Ωf .
Here, Ωτ and Ω� are subsets of R2 that limit the search
space for takeoff and landing points, respectively. In
practice these sets can be obtained as the smallest box that
contains the points qi, i = 1, . . . , n, to be visited. Such a
box can be easily computed as Ωτ = Ω� = {x | mini qi ≤
x ≤ maxi qi}, where the minima and maxima are taken
element-wise over coordinates of points qi. Finally, Ωf =
{f | 0 ≤ f ≤ th,max}, which follows from (3). Therefore,
the tightest M in (19a) can be computed from (22) by
evaluating ‖τi−�j‖−vcfi,j at each vertex ofΩτ×Ω�×Ωf ,
followed by retaining the maximal value. Tight values of
M in (19b) and in (19c) can be obtained accordingly.

Remark 4. A direct consequence of Remarks 2 and 3
is that the MI-SOCP formulation (20) is always feasible,
provided the value of M is chosen per (21).

3.3. Extensions of (9). The solution to Problem 1 can
therefore be obtained by solving (20) as an MI-SOCP
problem. In this section we present several modifications
of (20) which reflect real-life scenarios.

First, the objective function (20a) can be extended to
account for minimization of the helicopter’s flyover time,
which is proportional to fuel consumption. This can be
done by adding the term

n∑

i=1

n∑

j=1

fi,j (23)

to (20a). Second, it might be desirable to minimize the
number of take-offs, which might induce a physical stress
on the helicopter. This can be achieved by including

n∑

i=1

n∑

j=1

αi,j (24)

into (20a). To allow the designer to assign priorities
to individual objectives, the individual cost terms are
associated with penalties γf ≥ 0 and γa ≥ 0 for (23)
and (24), respectively. The overall cost function in (20a)
then becomes

min
α,f,s,τ,�

tm + γf

n∑

i=1

n∑

j=1

fi,j + γa

n∑

i=1

n∑

j=1

αi,j . (25)

The constraints of (20) can be extended as well. One
natural extension is to limit the total number of takeoffs
of the helicopter. This can be achieved by adding the
constraint

n∑

i=1

n∑

j=1

αi,j ≤ mmax, (26)

where mmax is the maximal desirable number of takeoffs.
However, choosing a small value of mmax could lead
to infeasibility of (20) if the helicopter’s action radius,
represented by th,max in (3) and (18), does not allow the
helicopter to reach all targets during mmax takeoffs. To
overcome this limitation, we propose to use a soft version
of (26):

n∑

i=1

n∑

j=1

αi,j ≤ mmax + z. (27)

Here, z ≥ 0 is a new continuous optimization variable
which represents violation of the hard constraint. To
discourage the optimization problem from violating the
hard constraint unless absolutely necessary, the variable z
must be penalized by γzz in the objective function with γz

being sufficiently high (Kerrigan and Maciejowski, 2000).

4. Solution to Problem 2

Determining an optimal route of minimal length by
solving the MI-NLP (9) or its MI-SOCP version (20)
requires that the order in which the intermediate
waypoints qi, i = 1, . . . , n, are to be visited be known a
priori (Klaučo et al., 2014). In this section we show how
to find the optimal route subject to the assumption that the
order is not given, but can be optimized so as to decrease
the mission time. Two approaches can be used. One is
to neglect the heterogeneity of the vehicle and regard it
as having homogeneous dynamics. Then an extension of
the well-known (Miller et al., 1960) traveling salesman
problem (TSP) can be used to deduce the optimal ordering
of the intermediate waypoints. However, such a solution
would only be suboptimal for heterogeneous dynamics.
Therefore, in this section we present a truly optimal
solution which takes the specifics of the vehicle into
account. To optimize the ordering, one approach is to
optimize over the indices of the intermediate waypoints
in (5) and (6). An alternative strategy is to introduce a
new set of waypoints, which will correspond to an optimal
permutation of the original ones. The latter approach is
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used next. The suboptimal TSP-based approach will be
discussed in Section 4.2.

4.1. Optimal solution to Problem 2. Let us first
aggregate the intermediate waypoints qi column-wise into
the matrix Q ∈ R

2×n:

Q =
[
q1 q2 · · · qn

]
. (28)

Subsequently, we introduce a binary permutation matrix
P ∈ {0, 1}n×n with the row and column sums equal to
one:

n∑

i=1

Pi,j = 1, j = 1, . . . , n, (29a)

n∑

j=1

Pi,j = 1, i = 1, . . . , n. (29b)

Then

Q̃ = QP (30)

denotes the matrix of permuted intermediate waypoints.
Let q̃j denote the j-th column of

Q̃ =
[
q̃1 q̃2 · · · q̃n

]
. (31)

Then if Pi,j = 1, the i-th original waypoint qi will in
fact be visited as the j-th one. The advantage of this
formulation is that the order of the permuted waypoints,
i.e., q̃j , j = 1, . . . , n, is now fixed and the optimization of
the ordering was moved to the binary permutation matrix.

With this change, the constraint (5) becomes

αi,j

(
‖τi − q̃i‖+ d̃i,j + ‖q̃j − �j‖

)
≤ vhfi,j , (32)

which must hold for all i = 1, . . . , n and j = 1, . . . , n.
Here, d̃i,j is the Euclidean distance between q̃i and q̃j .
Note that, in Section 3, these distances were pre-computed
and considered constants, cf. (6). However, in this
section the points q̃j depend on the choice of the binary
permutation matrix P , which is a decision variable.
Therefore, the distances must be computed inside the
optimization problem via

d̃i,j =

j−1∑

k=i

‖q̃k − q̃k+1‖. (33)

The optimized variables in the new problem are q̃i,
i = 1, . . . , n, as the permuted waypoints, P as the
binary permutation matrix, α as the binary matrix of
takeoff/landing sequences, τi and �j as the takeoff and
landing coordinates, respectively, as well as the matrices
f and s, which represent the flyover and cruise times,

respectively. They can be computed by solving

min
˜Q,P,α,f,s,τ,�

tm (34a)

subject to

fi,j − th,max ≤ M(1− αi,j), (34b)

‖τi − �j‖ − vcfi,j ≤ M(1− αi,j), (34c)

d̃i,j =

j−1∑

k=i

‖q̃k − q̃k+1‖, (34d)

(
‖τi − q̃i‖+ d̃i,j + ‖q̃j − �j‖

)
− vhfi,j

≤ M(1− αi,j), (34e)

‖�j − τj+1‖ − vcsi,j ≤ M(1− αi,j), (34f)
n∑

i=1

Pi,j = 1, (34g)

n∑

j=1

Pi,j = 1, (34h)

Q̃ = QP, (34i)

fi,j ≥ 0, si,j ≥ 0, (34j)

Pi,j ∈ {0, 1}, αi,j ∈ {0, 1}. (34k)

In the objective function (34a), tm is defined per (8),
taking the permuted waypoints into account indirectly via
fi,j , which represent the flyover time from q̃i to q̃j . In
the constraints, (34b) stands for the limited flyover time
and is identical to (18), which in turn is a big-M version
of (3). Next, (34c) and (34f) are the same as in (19a)
and in (19c) and represent the big-M versions of (4)
and (7), respectively. These two constraints ensure that
the agile part of the heterogeneous vehicle meets the ship
at the landing point. The permuted waypoints q̃j (taken
as the corresponding columns of the matrix Q̃) enter the
optimization problem via (34e), which is a big-M version
of (32), together with (30) and (33) embedded as (34i)
and (34d), respectively.

The optimization problem in (34) is still an
MI-SOCP since (34b), (34c), and (34f) are second-order
cone inequality constraints, (34d) is merely a substitution
for d̃i,j into (34e), and (34g)−(34j) are linear constraints.
However, compared with (20), the problem in (34) has n2

additional binary variables due to the permutation matrix
P . On the other hand, (34) optimizes the ordering of
waypoints while (20) assumes an a-priori known order.

Once the optimal solution to (34) is computed, the
optimal ordering can be easily extracted from the binary
permutation matrix P as described before. We remark
that the optimal takeoff and landing coordinates τi and �j ,
respectively, are already adjusted to the optimal ordering.

4.2. Suboptimal solution to Problem 2. A suboptimal
solution to Problem 2 can be obtained by neglecting the
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heterogeneous dynamics, i.e., assuming that the vehicle is
homogeneous and moves at a fixed speed. Then a standard
TSP algorithm of Miller et al. (1960) can be extended to
devise an optimal ordering of points for the homogeneous
vehicle. Needless to say that such an ordering need not be
optimal for the heterogeneous setup. We will investigate
its suboptimality in Section 5.

Let the matrix Q̃ = QP of permuted waypoints be
as in (30) and (31), with Q defined per (28). Moreover,
introduce a binary permutation matrix P ∈ {0, 1}n×n,
which optimally reorders the waypoints qi, i = 1, . . . , n.
The total distance traveled by the homogeneous vehicle is

l = ‖qs − q̃1‖+
(

n−1∑

i=1

‖q̃i − q̃i+1‖
)

+ ‖q̃n − qf‖. (35)

The objective is to devise an optimal selection of
P such that the total distance is minimized subject to
the constraint that each of the intermediate waypoints qi,
i = 1, . . . , n, is visited exactly once. This, however, is
equivalent to P satisfying (29). The search for an optimal
permutation matrix (and hence for the optimal reordering
of waypoints) can be cast as

min
˜Q,P

(35) subject to (29), (30), (36)

which is a mixed-integer linear program (MILP). Once
solved, the i-th column of Q̃, defined per (30) and (31), is
the waypoint which is to be visited as the i-th one on the
path qs → q̃1 → · · · → q̃n → qf. Once the optimal TSP
ordering of waypoints is obtained from (36), a suboptimal
solution to Problem 2 can be reached by considering the
TSP ordering in (20). Hence, two mixed-integer problems
need to be solved. However, MILPs of the form (36) are
usually cheaper to solve compared with MI-SOCPs since
all constraints are linear. In the next section we analyze
the suboptimality of this approach on a case study.

5. Case study

In this section we first analyze how the computational
complexity of the MI-SOCPs (20) and (34) scales with
an increasing number of intermediate waypoints. We
demonstrate that the approach of this paper scales much
better compared with the MI-NLP formulation of Garone
et al. (2012). However, the formulation in (34), which
also optimizes the ordering, is significantly more involved
compared with (20), where the ordering is assumed to
be fixed. In such a case the suboptimal TSP-based
approach of Section 4.2 can also be used on much more
favorable computational terms. Therefore, in Section 5.2
we analyze its suboptimality as well.

All computations were carried out on a 6-core
X5660 2.8 GHz Intel CPU with 16 GB of RAM
using Matlab 2014a. All optimization problems were

formulated using YALMIP (Löfberg, 2004). The
MI-SOCP problems (20), (34), and (36) were solved
by CPLEX (ILOG, 2007). The MI-NLP problem (9)
was solved by YALMIP’s global branch-and-bound solver
with fmincon as a subsolver, which was configured to
perform at most 1 × 104 iterations with at most 5 × 104

function evaluations.

5.1. Computational complexity analysis. First
we analyze the computational complexity of the
MI-SOCP formulation (20) as a function of the
number of waypoints points qi. To perform the
analysis, we randomly distributed n points for
n ∈ {10, 20, 30, . . . , 90, 100} in a box-shaped domain
with length of sides max{50, 2.5n} km. For each
value of n we generated three sets of points randomly
distributed in the box. The carrier’s speed was set to
vc = 18kmh−1 and the speed of the agile vehicle was
set to vh = 90kmh−1 with a maximal flyover time
th,max = 25min. Subsequently, for each scenario we
devised an optimal navigation plan by solving (20) and
measured the total computation time. Note that in this
analysis the ordering of waypoints was considered fixed
in advance, and therefore the procedure solves Problem 1.

The obtained results are shown graphically in Fig. 2.
The solid line shows the average computation time for
each value of n, the number of waypoints to be visited.
Moreover, the runtimes reported for each value of n
are the average among three sets of randomly generated
points. As can be observed, for n ≤ 50, it takes seconds
to minutes to devise an optimal path. For 50 ≤ n ≤
100, the computation time reaches an hour to several
hours. The non-monotonic behavior of Fig. 2 is due to
the random nature of the generated points. Therefore, the
computational time for obtaining the path plan for n = 70
can be shorter than the time for solving the MI-SOCP
when 50 randomly distributed points are considered.
Moreover, non-monotonicity is to be expected since
the mixed-integer problem is non-linear and its solution
depends on the branching strategy. Sometimes the solver
employs a more efficient branching procedure. However,
this is entirely problem-dependent.

Table 1 compares the complexity of the MI-NLP
problem in (9) with the proposed MI-SOCP formulation
in (20). Specifically, we solved both the problems for n ∈
{4, 5, 6, 7} randomly generated points. We remark that
the runtimes were obtained using the same HW/SW setup
for both formulations. As can be observed, the MI-SOCP
approach of this paper is significantly more effective than
the MI-NLP formulation by Garone et al. (2012), and
thus allows solving larger path-planning problems for
heterogeneous vehicles.

Next we analyze how the order-optimizing
formulation (34) scales with an increasing number of
waypoints. Note that this formulation solves Problem 2.
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Table 1. Solver runtimes required to solve the proposed MI-
SOCP formulation (20) and the MI-NLP setup in (9).
n MI-SOCP time [s] MI-NLP time [s]

4 0.03 317.4
5 0.07 467.1
6 0.13 951.9
7 0.14 1755.3
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Fig. 2. Time required to obtain an optimal solution to (20) as a
function of n and the number of points qi to visit.

In this case, n = {5, 7, 9, 10} randomly situated
waypoints were considered. Compared with (20), the
order-optimizing problem (34) has n2 additional binary
optimization variables due to the permutation matrix
P being used in (30) and is therefore more involved.
Individual calculation times are reported in Table 2. As
can be seen, the computation time for n = 10 points
is about 7.5 hours, a significant increase from several
seconds required in (20), where the order is assumed to
be fixed.

The second alternative to optimize the order of
waypoints is to use the suboptimal procedure of
Section 4.2. Here, first the TSP (36) is solved by
neglecting the heterogeneous properties of the vehicle.
Subsequently, the problem (20) is solved with the TSP
ordering. The computational complexity of (36), which is
formulated and solved as a mixed-integer linear problem,
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Fig. 3. Calculation time required to solve (36) as a function of
an increasing number of intermediate waypoints.

Table 2. Solver times required for solving the order-optimizing
problem (34).

n time [s]

5 1
7 41
9 691
10 27624

is shown in Fig. 3. As can be seen, the suboptimal
ordering of waypoints can be obtained in less than one
hour even for n = 100 waypoints. The necessary
tradeoff is the induced loss of optimality compared with
the solution of the truly optimal version (34). The amount
of suboptimality is analyzed in the next section.

5.2. Suboptimality analysis. As pointed out in
Section 4.2, the TSP ordering obtained by solving (36)
neglects the heterogeneous properties of the vehicle and
is therefore suboptimal. In this section we analyze the
induced loss of optimality compared with the solution
of (34), which optimizes the ordering while assuming
heterogeneous properties.

Table 3. Coordinates of an unordered list of visiting points.
x-coordinate y-coordinate

0.00 50.00
27.00 25.00
35.00 15.00
15.00 10.00
22.50 25.00
50.00 50.00
48.00 48.00

We considered 7 intermediate points in a grid of
50 × 50 km. Coordinates of these points can be found in
Table 3. In the test scenario coordinates of the starting
and the finish point were fixed as qs = [0 0]T and
qf = [50 0]T . We set the maximum time of helicopter
flyover to th,max = 25min, the speed of the agile
vehicle to vh = 90kmh−1 and the speed of the ship to
vc = 18kmh−1.

First, we devised the optimal mission plan by
formulating the order-optimizing problem (34) as an
MI-SOCP in the work of Löfberg (2004) and then solving
it by CPLEX. The time required to obtain the optimal
solution was 37 s. The path can be seen in Fig. 4(a). The
minimum mission time was 5.8319h.

Then, we neglected the heterogeneity of the vehicle
and optimized the order of waypoints by solving the
TSP (36). The TSP ordering was then used in (20) to
devise the plan for the heterogeneous vehicle. The time
needed for solving the TSP was 3.5 s. Subsequently,
solving the MI-SOCP (20) took 8.1 s. The path plan given
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by this procedure is shown in Fig. 4(b). The mission time
in this case was 5.8502h, which is by 65 s (or by 0.3%)
longer than in the truly optimal case.

The difference between the globally optimal order
of points and the TSP solution can be seen in Fig. 4. In
particular, in the optimal mission each waypoint is visited
individually, except for q5 and q6 from Fig. 4(a), which
are covered by a single flyover. On the other hand, in
the suboptimal TSP-based case, the waypoints q2 and q3
in Fig. 4(b) are visited together while all other points are
covered individually.
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Fig. 4. Optimal path plan compared with the suboptimal path
plan given by TSP ordering. The solid line represents
the trajectory traveled by the carrier and the dashed lines
represent the path of the agile vehicle. Takeoffs are de-
noted as τi and landing points as �i. Optimal path plan
(a), suboptimal path plan (b).

To give a better assessment of the suboptimality of
the TSP-based approach, we also investigated 50 random
test scenarios, each with 7 randomly distributed points.
For each test case the heterogeneously-optimal solution
was obtained by solving the MI-SOCP problem (34).
Subsequently, this globally optimal solution was
compared with the path obtained for the TSP ordering.
Recall that this path is obtained by first solving the
MI-LP (36), followed by using this ordering in the
MI-SOCP (20), which yields the path. The suboptimality
of the TSP ordering is expressed as

σ =
tTSP − tmin

tmin
× 100%, (37)

where tTSP is the mission time determined by solving the
MI-SOCP problem (20) with the ordering of points given
by the TSP algorithm. Mission time tmin is the shortest
time required for servicing targets determined by solving
the MI-SOCP problem (34). Results of this analysis are
shown in Fig. 5.
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Fig. 5. Illustration of the suboptimality of the TSP path with re-
spect to the optimal order of points. Plots with a linear
and a log scale are offered to better illustrate the differ-
ences near zero. Suboptimality plotted on a linear scale
(a) and on a logarithmic scale (b).

As can be seen in 31 out of 50 cases, which
amounts to 62%, the suboptimality of the TSP ordering
is less than 1% of the global optimum. In 15 cases
(or in 30%) the suboptimality is between 1% and
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20%. However, in 4 randomly generated cases the
suboptimality reaches as high as 60%. These results
indicate the expected suboptimality of the TSP-based
approach if the computational complexity of the truly
optimal MI-SOCP (34) is prohibitive for a large number
of waypoints.

6. Conclusions

This paper suggests a solution to a path planning
problem for heterogeneous multi-vehicle systems. The
main contribution of this paper is twofold. First,
if the order of waypoints to be visited is fixed,
we show how to devise an optimal mission plan by
solving a mixed-integer second-order cone optimization
problem (20). This problem is considerably simpler
to solve than the mixed-integer non-linear programming
formulation suggested by Garone et al. (2012). The
second contribution is that if the order of waypoints
is to be optimized, then an extended version of the
MI-SOCP procedure, reported as Eqn. (34), can be
used to simultaneously optimize the ordering as well
as the mission path. This new problem, however, is
computationally challenging since it introduces additional
binary variables. To mitigate the computational load, we
also suggest to approach the problem of optimizing the
ordering in two phases. First, the TSP-based ordering
is found by neglecting the heterogeneity, followed by
computing the path from (20). An extensive case study
is provided which suggests that the suboptimality of this
two-phase approach ranges from 0% to 63%.
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