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A single-server queueing system with an infinite buffer is considered. The service of a customer is possible only in the
presence of at least one unit of energy, and during the service the number of available units decreases by one. New units of
energy arrive in the system at random instants of time if the finite buffer for maintenance of energy is not full. Customers are
impatient and leave the system without service after a random amount of waiting time. Such a queueing system describes,
e.g., the operation of a sensor node which harvests energy necessary for information transmission from the environment.
Aiming to minimize the loss of customers due to their impatience (and maximize the throughput of the system), a new
strategy of control by providing service is proposed. This strategy suggests that service temporarily stops if the number
of customers or units of energy in the system becomes zero. The server is switched off (is in sleep mode) for some time.
This time finishes (the server wakes up) if both the number of customers in the buffer and the number of energy units reach
some fixed threshold values or when the number of energy units reaches some threshold value and there are customers
in the buffer. Arrival flows of customers and energy units are assumed to be described by an independent Markovian
arrival process. The service time has a phase-type distribution. The system behavior is described by a multi-dimensional
Markov chain. The generator of this Markov chain is derived. The ergodicity condition is presented. Expressions for
key performance measures are given. Numerical results illustrating the dependence of a customer’s loss probability on the
thresholds defining the discipline of waking up the server are provided. The importance of the account of correlation in
arrival processes is numerically illustrated.

Keywords: energy harvesting, threshold strategy, optimization, Markovian arrival process.

1. Introduction

Queueing theory has wide applications in capacity
planning, performance evaluation and optimization of
a huge variety of real life objects and processes.
Traditional queueing models assume that there is a flow
of customers which is processed by some server (in
single-server settings) or servers (in multi-server settings).
However, in some real life systems the situation is more
complicated because the server is not an independent
object. Its operation depends on the presence of some
additional items (windows, tokens, permissions, details,
semi-finished products, etc.).

∗Corresponding author

The standard situation considered in the literature
devoted to analysis of queueing systems with additional
items is as follows. The total number of additional items
in the system is finite and the items are reusable. They are
“borrowed” by the server to provide service to a customer.
After service completion, the item returns to the pool
of items. Such a scenario takes place, e.g., when it is
necessary to regulate the speed of customers admission
(in protocols like the sliding window, the leaky bucket,
etc.) or when service is provided with the help of some
equipment. Among related papers, we can mention the
one by Dudin and Klimenok (1996), where the additional
item is interpreted as a passive server, and that by Kim
et al. (2009), where the additional item is interpreted as a
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token that is necessary to start the service of a session.
In this paper, we consider another situation. We also

assume that the service of a customer requires the use
of an additional item, but this item is not reusable. It
disappears from the system forever after the beginning of
service of the customer. If during a service completion
epoch there is no additional item in the system, the
service of customers is suspended. New additional items
are delivered into the system at random instances. We
suggest that the service is resumed when the number of
additional items and (or) the number of customers exceeds
some preassigned thresholds. Generally speaking, several
additional items are used at the service resume moment.
Customers are impatient and leave the system (are lost)
after a random amount of time. The goal is to assign
the values of thresholds aiming to minimize customer loss
probability.

Examples of possible applications of the model under
consideration are as follows.

(i) Optimization of operation of a sensor node. For more
information about the concept of sensor networks and
related research, see the work of Akyildiz et al. (2002).
The sensor node senses a random field and generates
packets to be transmitted to a central node. The sensor
node has a battery of a finite capacity and harvests energy
during its operation from outside (we can mention solar
cells, wind turbines, piezo electric cells, radio frequency
collectors, etc.). We assume that the energy is slotted
to energy units and one unit is required to transmit one
packet. To save energy, the node switches to sleep mode
after all available packets are transmitted and stays in this
mode for some time. This time should be long enough
to earn energy units for battery for future transmissions,
but it should be short enough due to obsolescence of
information collected by the sensor node.

If the waiting time of a packet exceeds some
level, transmission of this packet becomes meaningless.
The queueing model under study should help to find
some trade-off in this situation. Analogous models
were formulated, e.g., in the papers of Yang and
Ulukus (2012a), Sharma et al. (2010), Tutuncuoglu and
Yener (2012) or Yang and Ulukus (2012b), where more
information about quite extensive literature concerning
systems with energy harvesting is presented. However, the
analysis was provided there either in deterministic settings
or not in terms of queueing theory.

Here we provide queueing analysis of the
corresponding system. We assume that arrival flows
of customers and energy units are random and the service
time of a customer is random as well. Recently, an
analysis of a queueing model with energy harvesting was
performed by Gelenbe (2015), who assumed that the
service to customers is performed instantaneously. This
implies that the buffer of customers or (and) the buffer

of energy should be always empty. We assume that the
service time is random and not equal to zero.

We do not follow the traditional assumptions that the
arrival flows are stationary Poisson and the service time
distribution is exponential. We assume that the arrival
flows of customers (packets) and units are described by
a Markovian arrival process. This allows us to catch
possible correlation in arrival processes (possibility to
have time intervals when customers or energy units arrive
more or less frequently). This is important from the
point of view of applications because, e.g., the speed
of energy harvesting may essentially vary depending on
sunshine or speed of the wind. Concerning the service
process, we assume that the service time has a PH
(phase-type) distribution, which is more general than an
exponential distribution. As will be shown in numerical
results below, correlation in arrival processes and variation
of the service process drastically change the system
characteristics comparing to those in the system with
stationary Poisson arrival processes having the same mean
arrival rate and an exponential service time distribution.

(ii) Performance evaluation of operation of a manufactur-
ing station where the repairing of some devices is imple-
mented. Repairing a device requires using return some
semi-finished product. If this product is absent at the
stock, the repair is not possible. In this case, it makes
sense to offer vacation to the repairman and optimally
choose the strategy of this repairman’s from vacation.

The queueing model considered is the one with
server vacations. However, it is not imbedded to some
known class of vacation queueing models. Vacation
models are usually classified (see, e.g., Doshi, 1986;
Takagi, 1991; Tian and Zhang, 2006), by the discipline
of switching the server off (exhaustive, gated, limited,
etc.) and switching it on (N -, T -, E-strategies, etc.). The
model under study is close in some sense to systems with
exhaustive service (service is stopped after the system
becomes empty), but indeed service here is not exhaustive.
It may be interrupted also due to the lack of additional
units. This model is close to systems with limited service,
but models considered in the literature do not assume that
the limit depends on future dynamics of service, while
we here have such dependence. The model considered is
close to systems with N -strategy of switching the server
on. However, here we suggest alternative schemes for
switching the server on, depending not only on the number
of customers in the queue, but also on the current number
of available additional units.

The remainder of this paper is structured as follows.
In Section 2, the mathematical model is described. In
Section 3, the process of the system states is completely
defined. The ergodicity condition and the stationary
probabilities of the system states are discussed in
Section 4. Formulas for computation of the performance
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measures of the system are presented in Section 5.
Numerical examples are given and an optimization
problem is discussed in Section 6. Section 7 concludes
the paper.

2. Mathematical model

We consider a single-server queueing system with an
infinite buffer for customers and a buffer of capacity K
for energy units. The structure of the system under study
is presented in Fig. 1.
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Fig. 1. Queueing system under study.

Customers arrive in the system according to a
Markovian arrival process. We will code this process as
MAP1. Arrivals in MAP1 are directed by an irreducible
continuous time Markov chain νt, t ≥ 0, with the
finite state space {0, 1, . . . ,W}. The sojourn time of the
Markov chain νt, t ≥ 0, in the state ν, has an exponential
distribution with the parameter λν , ν = 0,W. Here,
notation such as ν = 0,W means that ν assumes
values from the set {0, 1, . . . ,W}. After this sojourn time
expires, with probability pk(ν, ν

′), the process νt transits
to the state ν′ and k customers, k = 0, 1, arrive in the
system. The intensities of transitions from one state to
another, which are accompanied by arrival of k customers,
are combined to the square matrices Dk, k = 0, 1, of size
W + 1. The matrix generating function of these matrices
is D(z) = D0 + D1z, |z| ≤ 1. The matrix D(1) is
an infinitesimal generator of the process νt, t ≥ 0. The
stationary distribution vector θ of this process satisfies the
system of equations θD(1) = 0, θe = 1. Here and in
the sequel 0 is a zero row vector and e denotes a unit
column vector. If the dimensionality of a vector is not
clear from the context, it is indicated as a lower index,
e.g., eW̄ denotes the unit column vector of dimensionality
W̄ = W + 1.

The average intensity λc (fundamental rate) of the
MAP1 is defined by λc = θD1e. The variance v of
customers’ inter-arrival time is calculated by

v = 2(λc)
−1θ(−D0)

−1e− (λc)
−2,

the squared coefficient of the variation is calculated by

cvar = 2λcθ(−D0)
−1e− 1,

while the coefficient of correlation of intervals between
successive arrivals is given by

ccor =
1

v
((λc)

−1θ(−D0)
−1D1(−D0)

−1e− (λc)
−2).

Units of energy arrive in the system according to the
Markovian arrival process MAP2. Arrivals in MAP2 are
directed by an irreducible continuous time Markov chain
ζt, t ≥ 0, with the finite state space {0, 1, . . . , V }. MAP2

is defined by the matrices H0 and H1. Let us denote the
average intensity of MAP2 as λe.

We assume that for service of one customer a unit of
energy is required. So, when the customer is chosen for
service, the number of units of energy decreases by one. If
after the service completion epoch the buffer of customers
or the buffer of energy is empty, the server is switched
off. To switch the server on, n, 0 ≤ n < K, units of
energy are required. These units disappear from the buffer
of energy at the moment of the server being switching on.

The server is switched on in the following two cases:

(i) the number of customers in the buffer is greater than or
equal to m, m ≥ 1, and the number of units of energy is
greater than k1, n < k1 < K;

(ii) the number of units of energy is greater than k2, k1 ≤
k2 < K, and the buffer is not empty.

If, in the energy arrival epoch, the buffer of energy is
full, then the arriving unit is lost.

The service time of a customer at the server has
a PH distribution with an irreducible representation
(β, S). This service time can be interpreted as time
until the underlying Markov process ηt, t ≥ 0, with a
finite state space {1, . . . ,M,M + 1} reaches the single
absorbing state M +1 condition on the fact that the initial
state of this process is selected from among the states
{1, . . . ,M} according to the probabilistic row vector β =
(β1, . . . , βM ). Transition rates of the process ηt within
the set {1, . . . ,M} are defined by the sub-generator S,
and transition rates into the absorbing state (which leads to
service completion) are given by the entries of the column
vector S0 = −Se.

The service time distribution function has the form
A(x) = 1 − βeSxe, the Laplace–Stieltjes transform
(LST )

∞∫

0

e−sxdA(x)

of this distribution is β(sI − S)−1S0, Re s > 0. The
mean service time is calculated by b1 = β(−S)−1e. The
squared coefficient of variation is given by cvar = b2/b

2
1−

1, where b2 = 2β(−S)−2e.
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The problem of fitting the measurements of arrival
and service processes in real world systems with a
Markovian arrival process and a PH distribution can be
solved by analogy with Mészáros et al. (2014).

Customers in the buffer can be impatient, i.e.,
the customer leaves the buffer after time exponentially
distributed with the parameter α, 0 ≤ α < ∞, after the
arrival due to the lack of service.

3. Process of the system states

It is easy to see that the behavior of the system under study
is described in terms of the following regular irreducible
continuous-time Markov chain:

ξt = {it, rt, kt, νt, ζt, ηt}, t ≥ 0,

where, during the epoch t, t ≥ 0,

• it is the number of customers in the system, it ≥ 0;

• rt is an indicator that indicates whether or not the
server works: rt = 0 corresponds to the case when
the server does not work and rt = 1 to the one when
the server works;

• kt is the number of energy units, kt = 0,K;

• νt is the state of the underlying process of MAP1,
νt = 0,W ;

• ζt is the state of the underlying process of MAP2,
ζt = 0, V ;

• ηt is the state of the PH service process, ηt = 1,M.
The initial state of this process is defined, according
to the stochastic vector β, with service completion
of the previous customer. When the server does not
work, the chosen state is frozen.

The Markov chain ξt, t ≥ 0, has the following state
space:
(
{0, 0, k, ν, ζ, η}, k = 0,K

)

∪
(
{i, 0, k, ν, ζ, η}, i = 1,m− 1, k = 0, k2

)

∪
(
{i, 0, k, ν, ζ, η}, i ≥ m, k = 0, k1

)

∪
(
{i, 1, k, ν, ζ, η}, i ≥ 1, k = 0,K

)
,

ν = 0,W, ζ = 0, V , η = 1,M.

In the sequel, we use the following notation:

• I is an identity matrix, and O is a zero matrix of
appropriate dimension;

• ⊗ and⊕ indicate the symbols of a Kronecker product
and a sum of matrices, respectively;

• V̄ = V + 1;

• E+ is a square matrix of size K + 1 with all
zero entries except (E+)l,l+1, l = 0,K − 1, and
(E+)K+1,K+1, which are equal to 1;

• E+
k , k = k1, k2, is a square matrix of size k + 1

with all zero entries except (E+
k )l,l+1, l = 0, k − 1,

which are equal to 1;

• E− is a square matrix of size K + 1 with all zero
entries except (E−)l,l−1, l = 1,K, which are equal
to 1;

• E−
k , k = k1, k2, is a matrix of size (k + 1)× (K +

1) with all zero entries except (E−
k )k,k−n, which is

equal to 1;

• Îk, k = k1, k2, is a matrix of size (k+1)× (K +1)
with all zero entries except (Îk)0,0, which is equal to
1;

• Īk, k = k1, k2, is a matrix of size (K +1)× (k+1)
with all zero entries except (Īk)l,l, l = 0, k, which
are equal to 1;

• Ik,j is a matrix of size (k+1)× (j+1) with all zero
entries except (Ik,j)l,l, l = 0,min{k, j}, which are
equal to 1;

• Ĩ is a matrix of size (k2 +1)× (K +1) with all zero
entries except (Ĩ)l,l−n−1, l = k1 + 1, k2, which are
equal to 1;

• I−k , k = k1, k2, is the matrix of size (K + 1) ×
(K + 1) with all zero entries except the entries
(I−k )k+1,l−n−1, l = k + 1,K, which are equal to 1;

• δa=b =

{
1, if a = b,
0, otherwise .

Let us enumerate the states of the Markov chain
ξt, t ≥ 0, in direct lexicographic order of the components
r, k, ν, ζ, η, and refer to the set of the states of the chain
having values (i, r) of the first two components of the
Markov chain as a macro-state (i, r). Let Q be the
generator of the Markov chain ξt, t ≥ 0, consisting of
the blocks Qi,j , which, in turn, consist of the matrices
(Qi,j)r,r′ of the transition rates of this chain from the
macro-state (i, r) to the macro-state (j, r′), r, r′ = 0, 1.
The diagonal entries of the matrices Qi,i are negative, and
the modulus of the diagonal entry of the blocks (Qi,i)r,r
defines the total intensity of leaving the corresponding
state of the Markov chain ξt, t ≥ 0.

Theorem 1. The infinitesimal generator Q = (Qi,j)i,j≥0
of the Markov chain ξt, t ≥ 0, has a block-tridiagonal
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structure:

Q =

⎛
⎜⎜⎜⎝

Q0,0 Q0,1 O O . . .
Q1,0 Q1,1 Q1,2 O . . .
O Q2,1 Q2,2 Q2,3 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ .

The non-zero blocks Qi,j , i, j ≥ 0, have the following
form:

Q0,0 = IK+1 ⊗ (D0 ⊕H0)⊗ IM

+ E+ ⊗ IW̄ ⊗H1 ⊗ IM ,

Qi,i =

(
Q

(0,0)
i,i Q

(0,1)
i,i

O Q
(1,1)
i,i

)
, i > 0, (1)

Q
(0,0)
i,i = −iαI + Ik2+1 ⊗ (D0 ⊕H0)⊗ IM

+ E+
k2

⊗ IW̄ ⊗H1 ⊗ IM , i = 1,m− 1,

Q
(0,0)
i,i = −iαI + Ik1+1 ⊗ (D0 ⊕H0)⊗ IM

+ E+
k1

⊗ IW̄ ⊗H1 ⊗ IM , i ≥ m,

Q
(0,1)
i,i =

{
E−

k2
⊗ IW̄ ⊗H1 ⊗ IM , i = 1,m− 1,

E−
k1

⊗ IW̄ ⊗H1 ⊗ IM , i ≥ m,

Q
(1,1)
i,i = IK+1 ⊗ (D0 ⊕H0 ⊕ S)

+ E+ ⊗ IW̄ ⊗H1 ⊗ IM − (i − 1)αI,

i > 0,

Q0,1 =
(

Q
(0,0)
0,1 Q

(0,1)
0,1

)
, i > 0,

Q
(0,0)
0,1 =

{
Īk1 ⊗D1 ⊗ IV̄ M , m = 1,
Īk2 ⊗D1 ⊗ IV̄ M , m > 1,

Q
(0,1)
0,1 =

{
I−k1

⊗D1 ⊗ IV̄ M , m = 1,

I−k2
⊗D1 ⊗ IV̄ M , m > 1,

Qi,i+1 =

(
Q

(0,0)
i,i+1 Q

(0,1)
i,i+1

O Q
(1,1)
i,i+1

)
, i > 0, (2)

Q
(0,0)
i,i+1 =

⎧⎨
⎩

Ik2+1 ⊗D1 ⊗ IV̄ M , i < m− 1,
Ik2,k1 ⊗D1 ⊗ IV̄ M , i = m− 1,
Ik1+1 ⊗D1 ⊗ IV̄ M , i > m− 1,

Q
(0,1)
i,i+1 = δi=m−1Ĩ ⊗D1 ⊗ IV̄ M ,

Q
(1,1)
i,i+1 = IK+1 ⊗D1 ⊗ IV̄ M ,

Q1,0 =

(
αIk1,K ⊗ IW̄ V̄ M

I(K+1)W̄ V̄ ⊗ S0β

)
, i > 0, m = 1,

Q1,0 =

(
αIk2,K ⊗ IW̄ V̄ M

I(K+1)W̄ V̄ ⊗ S0β

)
, i > 0, m > 1,

Qi,i−1 =

(
Q

(0,0)
i,i−1 O

Q
(1,0)
i,i−1 Q

(1,1)
i,i−1

)
, i > 1, (3)

Q
(0,0)
i,i−1 =

⎧⎨
⎩

iαIk2+1 ⊗ IW̄ V̄ M , i < m,
iαIk1,k2 ⊗ IW̄ V̄ M , i = m,
iαIk1+1 ⊗ IW̄ V̄ M , i > m,

Q
(1,0)
i,i−1 =

{
Îk2 ⊗ IW̄ V̄ ⊗ S0β, i ≤ m,

Îk1 ⊗ IW̄ V̄ ⊗ S0β, i > m,

Q
(1,1)
i,i−1 = (i− 1)αI(K+1)W̄ V̄ M

+ E− ⊗ IW̄ V̄ ⊗ S0β.

Proof. The proof of the lemma proceeds by analysing
all transitions of the Markov chain ξt, t ≥ 0, during
an interval of an infinitesimal length and rewriting the
intensities of these transitions in block matrix form.

The negative diagonal entries of the matrix Q0,0

define, up to the sign, the intensities of the exit of the
Markov chain ξt from the macro-state (0, 0). Such an exit
can happen due to a change in the state of the underlying
processes of MAP arrivals of customers and energy.
The non-diagonal entries of the matrix (Q0,0) define the
intensities of the transition of the Markov chain ξt inside
the macro-state (0, 0). These transitions can happen due
to the change in the state of the underlying processes
of MAP1 and MAP2 that are not accompanied by a
customer or a unit of energy arrival. This reasoning
explains the summand IK+1 ⊗ (D0 ⊕ H0) ⊗ IM on
the right-hand side of the formula for the matrix Q0,0.
The symbols of Kronecker product and sum of matrices
are very helpful for description the intensities of joint
transitions of several independent Markov chains. The
summand E+ ⊗ IW̄ ⊗H1 ⊗ IM on the right-hand side of
formula for the matrix Q0,0 corresponds to a possibility
of transition of the Markov chain ξt inside the macro-state
(0, 0) due to the change in the state of the underlying
process of MAP2 that leads to the arrival of a unit of
energy. The matrix E+ here reflects the increase in the
number of units of energy in the buffer by one.

The negative diagonal entries of the matrix
Q

(r,r)
i,i , i ≥ 1, up to the sign define the intensities of
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the exit of the Markov chain ξt from the macro-state
(i, r), r = 0, 1. This exit can happen due to customer
service completion, departure of a customer from the
buffer due to impatience, and also the change in the
state of the underlying processes of MAP arrivals of
customers and energy. The non-diagonal entries of the
matrix (Qi,i)

(r,r) define the intensities of the transition of
the Markov chain ξt inside the macro-state (i, r). These
transitions can happen due to the change of the state of
the underlying process of MAP1 that in not accompanied
by a customer arrival or any change in the state of the
underlying process of MAP2, including the change that
causes the arrival of an energy unit when this arrival does
not lead to switching the server on.

The zero block in the structure (1) of the matrix
Qi,i, i ≥ 1, stems from the fact that the transition from the
macro-state (i, 1) to the macro-state (i, 0) is not possible
because the server can be switched off only during the
epoch of service completion which mandatorily leads to a
decrease in the number of customers in the system. The
matrices (Qi,i)

(0,1) define the intensities of switching the
server on caused by energy unit arrival. In this case the
number of energy units decreases by n and the service
process starts.

The matrix Q0,1 defines the intensities of the events
that lead to the increase of the number of customers in
the system from zero to one. In this case, the server can
be switched on (the intensities of this event are defined
by the matrix Q

(0,1)
0,1 ) or remain in the switched off mode

(these intensities are defined by the matrix Q
(0,0)
0,1 ).

The matrix Qi,i+1, i ≥ 1, defines the intensities of
events that lead to an increase in the number of customers
in the system and has the form (2). This form is explained
by the fact that the arrival of a customer cannot lead to
switching the server off. So, the matrix Q

(1,0)
i,i+1, i ≥ 1, has

all zero entries. The blocksQ(r,r)
i,i+1, i ≥ 1, r = 0, 1, define

the intensities of customers arrival that do not change the
state of the server. The block Q

(0,1)
i,i+1, i ≥ 1, defines the

intensities of customers arrival during the epoch when the
server is switched off; m− 1 customers are staying in the
buffer and the number of energy units is greater than k1.
In this case, the server is switched on, n + 1 energy units
disappear and a new service starts.

The matrix Q1,0 defines the intensities of events
that lead to the decrease in the number customers in
the system from one to zero. This can happen if the
server is switched on, service of a customer is finished
and the server switches off (these intensities are defined
by the matrix I(K+1)W̄ V̄ ⊗ S0β), or if the server is
switched off and the customer leaves the buffer due to
impatience (these intensities are defined by the matrix
αIδi=mk1+(1−δi=m)k2,K ⊗ IW̄ V̄ M ).

The matrix Qi,i−1, i ≥ 2, defines the intensities of
events that lead to the decrease in the number of customers

in the system by one and has the form (3). The blocks
Q

(0,1)
i,i−1, i ≥ 2, are equal to zero because the decrease

in the number of customers in the system cannot cause
the switching the server. The block (Qi,i−1)

(0,0) defines
the intensities of customers leaving the buffer due to
impatience. The block (Qi,i−1)

(1,1) defines the intensities
of the event that the service of a customer is finished
and a customer from the buffer is chosen for service or
a customer leaves the buffer due to impatience. The block
(Qi,i−1)

(1,0) defines the intensity of the event that in the
service completion epoch the buffer of energy is empty
and the server is switched off.

Since no more than one customer can leave the
system and no more than one customer can enter the
system during an interval of infinitesimal length, the
matrices Qi,j , i, j ≥ 0 are zero matrices when |i−j| > 1.

�

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to
the class of continuous-time asymptotically quasi-Toeplitz
Markov chains (AQTMC) (see Klimenok and Dudin,
2006).

Proof. Let us introduce the matrix Ri, i > m, as a
diagonal one with diagonal entries which are defined as
the moduli of the corresponding diagonal entries of the
matrix Qi,i. One can see that the matrix Ri, i > m, has
the following form:

Ri =

(
R

(0)
i O

O R
(1)
i

)
, i > m,

where

R
(0)
i = iαI + Ik1+1 ⊗ (Σ⊕Δ)⊗ IM ,

R
(1)
i = IK+1 ⊗ (Σ⊕Δ⊕ S̃) + (i− 1)αI.

Here Σ, Δ and S̃ are diagonal matrices whose
diagonal entries are defined as the corresponding diagonal
entries of the matrices −D0, −H0 and −S, respectively.

It is easy to verify that the following limits exist:

Y0 = lim
i→∞

R−1
i Qi,i−1, Y1 = lim

i→∞
R−1

i Qi,i + I,

Y2 = lim
i→∞

R−1
i Qi,i+1.

According to the definition given by Klimenok and
Dudin (2006), the existence of the limits Y0, Y1 and Y2

means that the Markov chain ξt, t ≥ 0, belongs to
the class of continuous-time asymptotically quasi-Toeplitz
Markov chains (AQTMC). �

Let us analyze the properties of this Markov chain.
This analysis should include derivation of conditions,
which should be imposed on the system parameters to
guarantee the existence of the stationary distribution of the
states of the chain (ergodicity condition), and a procedure
for computation of the stationary probabilities of the
states.
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4. Ergodicity condition and the stationary
probabilities of the system states

Let us separately consider the cases when the customers
are impatient (α > 0) and absolutely patient (α =
0). In the former case, the customers, due to their
impatience, can leave the system without service. In this
case, as we will show below, the stationary distribution
of the states of the chain exists for any set of the system
parameters and the main interest is in the analysis of
the customer loss probability and finding the ways for
reducing this probability. In the latter case, the ergodicity
condition is the most important subject of analysis. This
condition answers the question whether or not the system
has a stationary mode of operation under a fixed set of
parameters of flows of customers and energy and the
service rate. This condition is not trivial and is presented
below, while the loss probability in this case is equal
to zero. So, numerical analysis of the loss probability
presented in Section 6 should be replaced with analysis
and optimization of the average waiting or sojourn time
of an arbitrary customer. This average time can be easily
computed via Little’s formula.

Let us first consider the case when α > 0. As follows
from the work of Klimenok and Dudin (2006), a sufficient
condition of the ergodicity of the Markov chain ξt, t ≥ 0,
is the fulfillment of the inequality

yY0e > yY2e.

where the vector y is the unique solution to the system

y(Y0 + Y1 + Y2) = y, ye = 1.

It is easy to verify that in the case considered the
matrices Y0, Y1 and Y2 have the following form:

Y0 = I, Y1 = O, Y2 = O,

and the ergodicity condition is given by the inequality
1 > 0, which is true for all possible values of the system
parameters. Accordingly, the stationary distribution of
the Markov chain (and the stationary regime of queueing
system operation) in case α > 0 exists for any set of the
system parameters.

Now, let us consider the case when α = 0. It is
evident that for i > m the matrices Qi,i, Qi,i−1 and
Qi,i+1 do not depend on i and are defined as follows:

Qi,i = Q0 =

(
Q(0,0) Q(0,1)

O Q(1,1)

)
,

Q(0,0) = Ik1+1 ⊗ (D0 ⊕H0)⊗ IM

+ E+
k1

⊗ IW̄ ⊗H1 ⊗ IM ,

Q(0,1) = E−
k1

⊗ IW̄ ⊗H1 ⊗ IM ,

Q(1,1) = IK+1 ⊗ (D0 ⊕H0 ⊕ S)

+ E+ ⊗ IW̄ ⊗H1 ⊗ IM ,

Qi,i−1 = Q−

=

(
O(k1+1)W̄ V̄ M O

Îk1 ⊗ IW̄ V̄ ⊗ S0β E− ⊗ IW̄ V̄ ⊗ S0β

)
,

Qi,i+1 = Q+ = Ik1+K+2 ⊗D1 ⊗ IV̄ M .

In consequence, in the case when α = 0, the
Markov chain ξt, t ≥ 0, belongs to the class of
continuous-time quasi-Toeplitz Markov chains (QTMC)
or quasi-birth-and-death processes, (see Neuts, 1981).

It follows from the work of Neuts (1981) that
the necessary and sufficient ergodicity condition of the
quasi-birth-and-death process is the fulfillment of the
inequality

yQ−e > yQ+e, (4)

where the row vector y is the unique solution to the
following system of linear algebraic equations:

y(Q− +Q0 +Q+) = 0, ye = 1. (5)

The ergodicity condition for the model considered is
easily verified algorithmically. The finite system (5) of
linear algebraic equations is solved on a computer. Then,
fulfillment of the inequality (4) is checked.

If α > 0 or the condition (4) is fulfilled in the case
when α = 0, then the positive stationary probabilities of
the system states π(i, r, k, ν, ζ, η), i ≥ 0, r = 0, 1, k =
0,K, ν = 0,W, ζ = 0, V , η = 1,M, exist.

Let us form the row vectors π(i, r, k) of these
probabilities enumerated in lexicographic order of the
components ν, ζ, η. Then, let us form the row vectors

π(0, 0) = (π(0, 0, 0),π(0, 0, 1), . . . ,π(0, 0,K)),

π(i, 0) = (π(i, 0, 0),π(i, 0, 1), . . . ,π(i, 0, k2)),

i = 1,m− 1,

π(i, 0) = (π(i, 0, 0),π(i, 0, 1), . . . ,π(i, 0, k1)),

i ≥ m,

π(i, 1) = (π(i, 1, 0),π(i, 1, 1), . . . ,π(i, 1,K)),

i ≥ 1,

π0 = π(0, 0),

πi = (π(i, 0),π(i, 1)), i ≥ 1.
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It is well known that the probability vectors πi, i ≥
0, satisfy the following system of linear algebraic
equations:

(π0,π1, . . . ,πi, . . . )Q = 0,

(π0,π1, . . . ,πi, . . . )e = 1,

where Q is the infinitesimal generator of the Markov
chain ξt, t ≥ 0. It is not possible to solve this system
directly on a computer because the system is infinite. The
well-known results for M/G/1 or G/M/1 type Markov
chains by M . Neuts are not applicable here because the
behavior of the Markov chain ξt is state inhomogeneous
and the generator Q does not have a Toeplitz-like
structure. To solve this system, a numerically stable
algorithm that takes into account that the matrix Q has a
block-tridiagonal structure, which is presented by Dudina
et al. (2013), can be proposed.

Theorem 2. The stationary probabilities vectors πi, i ≥
0, are calculated by the formula

πi = π0Fi, i ≥ 1.

Here the matrices Fi are calculated using the recursion

Fi = −Fi−1Qi−1,i(Qi,i +Qi,i+1Gi)
−1, i ≥ 1,

with the initial condition F0 = I, where the stochastic
matrices Gi are computed using the recursion

Gi = −(Qi+1,i+1 +Qi+1,i+2Gi+1)
−1Qi+1,i, i ≥ 0,

and the vector π0 is the unique solution to the system of
linear algebraic equations

π0(Q0,0 +Q0,1G0) = 0, π0

∞∑
i=0

Fie = 1.

The recursion for matrices Gi, i ≥ 0, is the
backward one and to compute the matrix Gi we must
know all matrices Gl, l > i, i ≥ 0. As was proven
by Klimenok and Dudin (2006), the sequence of the
matrices Gi converges, as i approaches infinity, to a
matrix G, which is the minimal non-negative solution to
the non-linear matrix equation

G = Y0 + Y1G+ Y2G
2.

Thus, for any predefined small positive number εG, there
exists such a value i0 that the norm of the matrix Gi−G is
less than εG for all i, i ≥ i0. Accordingly, in the backward
recursion we can set Gi = G for i ≥ i0. The matrices
Fi, i ≥ 0, have non-negative entries and, because we
assume that the chain under consideration is ergodic, the
norm of the matrix Fi tends to zero as i approaches
infinity. A recursive calculation of the matrices Fi from
recursion can be halted when the norm of the matrix
Fi becomes less than some preassigned positive εF . The
positive feature of the presented algorithm is its numerical
stability guaranteed by the fact of operation with only
non-negative matrices at all steps of the algorithm.

5. Performance measures

As soon as the vectors πi, i ≥ 0, have been calculated,
we are able to find various performance measures of the
system.

The probability Pserv that at an arbitrary moment the
server is busy is computed as

Pserv =

∞∑
i=1

π(i, 1)e.

The average number N (customer)
buffer of customers in the

buffer is given by

N (customer)
buffer =

∞∑
i=1

1∑
r=0

(i− r)π(i, r)e.

The average number N (energy)
buffer of units of energy in

the buffer is computed as

N (energy)
buffer =

( K∑
k=1

kπ(0, 0, k) +

m−1∑
i=1

k2∑
k=1

kπ(i, 0, k)

+

∞∑
i=m

k1∑
k=1

kπ(i, 0, k)

+

∞∑
i=1

K∑
k=1

kπ(i, 1, k)
)
e.

The average intensity λout of the flow of customers
that receive service is given by

λout =

∞∑
i=1

π(i, 1)(e(K+1)W̄V̄ ⊗ S0).

The probability P (customer)
loss that an arbitrary customer

will be lost is computed as

P (customer)
loss = 1− λout

λc
.

The probability P (energy)
loss that an arbitrary unit of

energy will be lost is given by

P (energy)
loss

=
1

λe

( ∞∑
i=1

π(i, 1,K) + π(0, 0,K)

)

× (IW̄ ⊗H1 ⊗ IM )e.

The probability Pserv-idle that at in arbitrary epoch the
server is idle (is switched off) is computed from

Pserv-idle =

∞∑
i=0

π(i, 0)e.
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6. Numerical examples and the
optimization problem

To demonstrate the feasibility of the results and prove the
importance of the consideration of the correlated arrival
flows and the phase-type service time distribution, we
present the following numerical example.

Let us consider a system with stationary Poisson
arrivals of customers and energy and an exponential
service time distribution (System 1), and the system with
Markovian arrival processes of customers and energy and
phase-type service time distribution (System 2) with the
same average intensities.

We assume that, in the case of System 1, the arrival
process of customers is defined by the matrices D0 =
(−0.6), D1 = (0.6). This arrival flow is a stationary
Poisson process and has the intensity λc = 0.6, the
coefficient of correlation is equal to 0 and the coefficient
of variation is equal to 1. The arrival process of energy
is defined by the matrices H0 = (−0.9), H1 = (0.9).
This arrival flow is a stationary Poisson process and has
the intensity λe = 0.9, the coefficient of correlation is
equal to 0 and the coefficient of variation is equal to 1.
The service time distribution is exponential and defined
by S = (−1.5) and β = (1). The average service time is
equal to 2

3 , the coefficient of variation cvar is equal to 1.
In the case of System 2, we assume that the arrival

process of customers is defined by the matrices

D0 =

( −0.810984 0
0 −0.026322

)
,

D1 =

(
0.805592 0.005392
0.01466 0.01166

)
.

The fundamental rate of this arrival process is λc = 0.6,
the coefficient of correlation of successive inter-arrival
times is 0.2, the coefficient of variation of inter-arrival
times is 12.34.

The arrival process of energy is defined by the
matrices

H0 =

( −3.057919 0
0.000914 −0.0992

)
,

H1 =

(
3.026068 0.031851
0.010919 0.087367

)
.

The fundamental rate of this arrival process is λe = 0.9,
the coefficient of correlation of successive inter-arrival
times is 0.4, the coefficient of variation of inter-arrival
times is 12.39.

PH service process of customers is characterized by
the vector β = (1, 0) and the matrix

S =

( −3 3
0 −3

)
.

The mean service time in this service process is equal to
2/3, the coefficient of variation cvar is equal to 0.5.

The rest of the system parameters are the same for
each system under consideration and are assumed to be as
follows:

K = 20, k2 = 16, α = 0.015, n = 2.

One of the most important performance
characteristics of the model considered is the probability
P (customer)

loss that an arbitrary customer will be lost.
Consequently, it is reasonable to consider the problem of
minimization of this probability via a suitable choice of
the thresholds m and k1 defining the strategy of switching
the server on.

To illustrate the behavior of the key performance
measures of the system, we will vary the thresholds m
and k1 of switching the server on strategy in the range
m ∈ [1, 15] and k1 ∈ [n+ 1, k2].

Figure 2 illustrates the dependence of the loss
probability of customers on m and k1 for the two systems
considered. Here and in the sequel, the top part of a figure
represents the performance measures of System 1, while
the bottom part stars the performance measures of System
2.
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Fig. 2. Dependence of P (customer)
loss on m and k1.

The optimal values of the thresholds and loss
probability for System 1 are

k1 = 7, m = 3, P (customer)
loss = 0.03437,
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and for System 2 they are

k1 = 6, m = 9, P (customer)
loss = 0.39375.

The difference between the values of this probability in
the cases of System 1 and System 2 is huge. The model
with stationary Poisson arrival processes gives a very
optimistic estimation of the loss probability. So, if the
real life flow is correlated, one cannot trust results of
modelling the real life system via the more simple Sys-
tem 1.

Figure 3 illustrates the dependence of the probability
Pserv that the server is busy on m and k1.
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Fig. 3. Dependence Pserv on m and k1.

The value of this probability is lower for System 2.
This is understandable if we take into account Fig. 2. For
System 2, the share of lost customers is much bigger than
for System 1. Consequently, the server has more idle time.

Figure 4 illustrates the dependence of the probability
P (energy)

loss that an arbitrary unit of energy will be lost on m
and k1.

Again, similarly to Fig. 2, one can see a huge
difference between the values of the probability P (energy)

loss
in the cases of System 1 and System 2. A lot of energy
is lost in System 2 due to irregular arrival of energy units
and finite capacity of the buffer. Definitely, the capacity
of this buffer should be essentially increased, if possible,
to get better performance of the system.
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Fig. 4. Dependence of P (energy)
loss on m and k1.

Figure 5 illustrates the dependence of the average
number N (energy)

buffer of units of energy in the buffer on m and
k1.

This figure evidently corresponds to Fig. 4 because
the higher value of probability P (energy)

loss implies, on the
average, a smaller number of energy units in the buffer.

It is clear from these figures that correlation in arrival
processes and the variations in the service process have a
significant effect on the values of the system performance
measures and optimal threshold values. Ignorance of
correlation may lead to huge errors in prediction of
the system performance measures and parameters of
the control strategy. This explains the importance of
results presented in this paper because in many potential
applications the flows of customers and energy units have
positive correlation of inter-arrival times. This is because
the intervals when the object under observation of a
sensor node is in a normal (safe) state and only a few
of packets should be sent to a central node may alternate
with intervals when something wrong happens and a lot
of packets should be transmitted. Analogously, for the
energy units arrival process, the interval when energy
arrives intensively (e.g., due to sunny and (or) windy
weather) alternate with intervals when energy arrives
slowly (e.g., due to clouds and (or) a weak wind).
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7. Conclusion

In this paper, we considered a single-server queueing
system with an infinite buffer for customers and a finite
buffer for additional items (energy units) which are used
for the service of customers. This model suits well,
e.g., the modeling operation of a node of a sensor
network which is wireless, has a battery of low capacity
and harvests energy from the environment to provide
transmission of packets to a central node. Customers
are impatient and leave the system without service after
a random amount of waiting time having an exponential
distribution. This impatience models the obsolescence
of information to be transmitted during the waiting time,
which can make transmission of this information useless.
The service of a customer, if any, is possible only in
the presence of at least one unit of energy, and during
this service the number of available units decreases by
one. A new threshold strategy of switching the server
off and on depending on the current number of customers
and energy units is offered and analyzed. Numerical
results show the possibility of essentially decreasing the
probability of an arbitrary customer loss by means of a
proper choice the thresholds, defining the strategy. The
profound effect of correlation of arrival processes of
customers and energy units and the variation in the service
process is numerically illustrated.

Results can be used for investigating other real world

systems where some non-reusable resource should be
applied for the service of a customer. The results can
be extended to the case of cross-correlation of arrivals
of customers and energy units via consideration of the
Marked Markovian arrival process (see, e.g., Kim et al.,
2014). An extension to the case of a discrete time
system with energy harvesting is possible by means of the
technique described by Atencia (2014).
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