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This work presents an improvement of the approximation scheme for the Monge–Kantorovich (MK) mass transfer problem
on compact spaces, which is studied by Gabriel et al. (2010), whose scheme discretizes the MK problem, reduced to solve
a sequence of finite transport problems. The improvement presented in this work uses a metaheuristic algorithm inspired by
scatter search in order to reduce the dimensionality of each transport problem. The new scheme solves a sequence of linear
programming problems similar to the transport ones but with a lower dimension. The proposed metaheuristic is supported
by a convergence theorem. Finally, examples with an exact solution are used to illustrate the performance of our proposal.
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1. Introduction

In 1781 the French mathematician Gaspard Monge posed
the mass transfer problem (Monge, 1781). He thought,
intuitively, to find an optimal transportation plan to move
earth from an embankment to a hole. The cost function
considered was a distance. Monge was looking for
functions that assign each particle of the embankment to
its corresponding position in the hole.

In 1942 the Russian mathematician Leonid V.
Kantorovich posed the problem of translocation of masses
(Kantorovich, 2006a), which consists in minimizing the
translocation work to move an initial mass distribution
to a final mass distribution. He considered this problem
in compact metric spaces, Borel sets and a non-negative
continuous function. In 1948 Kantorovich realized that
when the cost function is a distance, the translocation
mass problem is a generalization of the Monge problem
(Kantorovich, 2006b). Since then this has been known as
the Monge–Kantorovich (MK) mass transfer problem.

∗Corresponding author

The MK problem became the prototype of many
problems in probability theory, differential geometry,
linear programming, stochastic control, information
theory, cybernetic and matrix theory (see Rachev and
Rüschendorf, 1998). In particular, Kantorovich’s metric
is defined by an MK problem. This metric is used
in several areas of abstract mathematics, e.g., measure
theory, ergodic theory, functional analysis, statistics and
others (see Rachev and Rüschendorf, 1998). Also, it
is used in several applications, for example, probability
metrics (Rachev, 1991), control of cancer radiotherapy
(Hanin et al., 1993), image registration and warping
(Haker et al., 2004), or limit theorems and recursive
stochastic equations (Rachev and Rüschendorf, 1998),
among other things.

Several authors have studied approximations
schemes for the MK problem. For example, Anderson
and Nash (1987) or Anderson and Philpott (1984) studied
an algorithm in which the underlying spaces are the unit
interval [0, 1]. In the work of Hernández-Lerma and
Lasserre (1998), a general approximation scheme based
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on infinite dimensional linear programming problems is
given, which can be applied to the MK problem. Gabriel
et al. (2010) and González-Hernández et al. (2006)
proposed a general approximation scheme for the MK
problem on compact and Polish spaces, respectively.
Other schemes for the MK problem were studied by
Benamou and Brenier (2000), Caffarelli et al. (2002),
Benamou (2003), Guittet (2003), and recently by Bosc
(2010) and Mèrigot (2011). This work presents an
improvement to the approximation scheme for the MK
problem on compact spaces given by Gabriel et al.
(2010).

The improvement proposed relies on the usage of a
metaheuristic algorithm inspired by the scatter search (SS)
algorithm (see Martı́ et al., 2006). At the beginning, the
SS was considered a new evolutionary method because
it combines two o more solutions in an initial set, called
the reference set, to create new solutions that improve
the original ones. In this sense, it is said that SS is an
evolutionary method. However, it breaks the premise that
evolutionary approaches must be based on randomization.
In contrast, SS adopts a deterministic approach to select
two or more elements of the reference set to create new
solutions. Such a way of work based on deterministic
decisions has distinguished SS from other evolutionary
methods. Furthermore, it has showed advantages to solve
a variety of complex optimization problems (see Laguna
et al., 2014). Unlike other metaheuristic algorithms which
are trajectory based (e.g., simulated annealing), SS is
based on a population of solutions and a deterministic
recombination process to generate new ones. It is also
based on the idea that potential solutions of a given
problem have different important elements. Therefore, a
suitable way to combine them is very convenient so as to
improve the quality of the solutions within an interactive
process.

The scheme proposed in this work solves a linear
programming (LP) problem similar to the transport (T)
problem but with a lower dimension. The LP problems
are constructed using a metaheuristic algorithm inspired
by SS.

The remainder of this paper is organized as follows.
In Section 2, we present the scatter search algorithm. In
Section 3, we study the MK problem and the numerical
approximation proposed by Gabriel et al. (2010). In
Section 4, we present an algorithm, inspired by scatter
search, to approximate the MK problem through a
sequence of LP problems in order to decrease the
number of variables of the transport problems and, as a
consequence, to decrease the execution time as well. In
Section 5, we prove our main results, i.e., the sequence
of solutions of the LP problems that approximate the
MK problem converges to the optimal value of the MK
problem. In Section 6, we use three examples in order
to illustrate the performance of the proposed scheme.

Finally, Section 7 summarizes our conclusions.

2. Scatter search: An evolutionary method

The evolutionary method known as scatter search (SS)
was introduced in the 1960s by Fred Glover, who
published the first description of the method in 1977,
establishing its main features. In the work of Glover
(1998), SS is detailed. The SS method follows the steps
presented in Algorithm 1.

Algorithm 1. Scatter search.
Step 1. Generate an initial set of different solutions and
improve them by using a suitable heuristic process. The
best solutions out of the initial set will be called the
reference solution set.

Step 2. Create new solutions by combining subsets of the
reference solutions in a structured way.

Step 3. Apply the heuristic adopted in Step 1 to improve
the new solutions generated in Step 2.

Step 4. The subset of best solutions obtained in Step 3 are
added to the current reference set.

Step 5. Repeat Steps 2, 3 and 4 until the reference set
does not change. To promote diversity in the reference
set, Step 1 can be called again. The whole process ends
when a termination condition (e.g., a number of iterations)
is reached.

The proposed scheme in this work is inspired by SS.
However, it has some differences, what we are going to
show further in this paper.

3. Monge–Kantorovich problem and its
numerical approximation

In the MK problem the following data are given:

1. two metric spaces X and Y , endowed with the
corresponding Borel σ-algebras B(X) and B(Y ),
respectively;

2. a measurable cost function c : X × Y → R;

3. a probability measure ν1 on X and a probability
measure ν2 on Y .

Let M(X × Y ) be the linear space of finite signed
measures on B(X × Y ) endowed with the topology of
weak convergence, and let M+(X × Y ) be the convex
cone of non-negative measures in M(X × Y ).

If μ is in M(X×Y ), we denote by Π1μ and Π2μ the
marginals (or projections) of μ on X and Y , respectively.
That is, for all A ∈ B(X) and B ∈ B(Y ) we have

Π1μ(A) := μ(A× Y ),

Π2μ(B) := μ(X ×B).
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Then the MK problem can be stated as follows:

MK : minimize 〈μ, c〉 :=
∫
X×Y

c dμ (1)

subject to Π1μ = ν1, (2)

Π2μ = ν2, (3)

μ ∈ M+(X × Y ). (4)

A measure μ in M(X × Y ) is a feasible solution for
the MK problem if it satisfies (2), (3) and (4), and 〈μ, c〉
is finite. The MK problem is called consistent if the set of
feasible solutions is non-empty, in which case its optimum
value is defined as

inf(MK) := inf{〈μ, c〉|μ ∈ F},
where

F := {μ|μ is a feasible solution to the MK problem}.
The MK problem is said to be solvable if there is a

feasible solution μ̂ that attains the optimum value. In this
case, μ̂ is called an optimal solution to the MK problem,
and the value inf(MK) is written as min(MK) = 〈μ̂, c〉.

If there exists a Borel measurable function f : X →
Y such that

ν2(B) = ν1(f
−1(B))

for all B ∈ B(Y ), then it is called the optimal coupling
for the MK problem. The former function is a transport
map or Monge’s solution.

Assumption 1. The following assumptions are required:

(a) The spaces X and Y are compact metric spaces.

(b) The cost function c(x, y) is continuous.

(c) The optimal solution for the MK problem exists and
it is unique.

Remark 1. The product measure μ := ν1 × ν2 is
a feasible solution for the MK problem. Therefore it is
consistent. Furthermore, in this case the MK problem
is solvable (see Anderson and Nash, 1987, Theorem
5.2; Hernaández-Lerma and Gabriel, 2002, Remark 2.5).
Moreover, uniqueness conditions for the MK problem are
established by Levin (2006, Theorems 2.1 and 2.2.).

We shall need the next three propositions and a
theorem proved by Gabriel et al. (2010).

Proposition 1. There exist two probability measure se-
quences {νn1 } on B(X) and {νn2 } on B(Y ), both with fi-
nite supports, such that {νn1 } weakly converges to ν1 and
{νn2 } weakly converges to ν2.

Remark 2. By the proof of Proposition 3.1 of
Gabriel et al. (2010), for a given sequence of positive
numbers {rn} such that rn ↓ 0, the two probability

measure sequences {νn1 } on B(X) and {νn2 } on B(Y )
have supports on finite sets contained in Xn and Y n,
respectively, where ∪nX

n and ∪nY
n are denumerable

dense sets in X and Y , respectively. We consider the set
Sn = Xn × Y n. Note that the elements of Sn are pairs
(x, y) with x ∈ X and y ∈ Y .

Now, a sequence of MK problems is introduced. For
each positive integer n, the following MK problem is
considered:

MKn : minimize 〈μ, c〉
subject to Π1μ = νn1 ,

Π2μ = νn2 ,

μ ∈ M+(X × Y ).

Proposition 2. If μ is a feasible solution to the MK
problem, then there exists a probability measure sequence
{μn} on B(X × Y ), with marginals Π1μ

n = νn1 and
Π2μ

n = νn2 , such that {μn} weakly converges to μ.

Proposition 3. If μ is a feasible solution for MKn, then
μ has a finite support denoted by supp(μ) and, moreover,

supp(μ) ⊂ Sn.

Using the above propositions, the MKn problem can
be discretized by a Tn problem in the following way:

Tn : minimize
∑

(x,y)∈Sn

cxyλ
n
xy

subject to
∑
y∈Y n

λn
xy = anx ∀x ∈ Xn,

∑
x∈Xn

λn
xy = bny ∀y ∈ Y n,

λn
xy ≥ 0 ∀(x, y) ∈ Sn,

where

cxy = c(x, y), anx = νn1 ({x}) , bny = νn2 ({y})
with x ∈ Xn and y ∈ Y n.

Remark 3. Note that
∑

x∈Xn

anx =
∑
y∈Y n

bny = 1,

and under this condition the Tn problem has an optimal
solution (see Bazaraa et al., 2010).

Now, if {λ̂n
xy} is an optimal solution to a Tn problem,

the measure is defined as

μ̂n(·) =
∑

(x,y)∈Sn

λ̂n
xyδ(x,y)(·),

where δ(x,y) denotes the Dirac measure concentrated at
(x, y) in X × Y .

Then we have the following convergence theorem.
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Theorem 1. There exist a subsequence {μ̂ni} of {μ̂n}
and a probability measure μ̂, such that the following
holds:

1. {μ̂ni} weakly converges to μ̂,

2. μ̂ is an optimal solution to the MK problem, and

3. lim
n→∞〈μ̂n, c〉 = min(MK).

A bound to the convergence order of this scheme is
given by

|〈μ̂, c〉 − 〈μ̂n, c〉| ≤ εn,

where
εn = sup {|c(x, y)− c(z, w)|} ,

with (x, y) and (z, w) in X × Y , d(x, z) < rn and
d(y, w) < rn (see Gabriel et al., 2010, Theorem 4.5).

In practice, for each n, the previous approximation
scheme can be implemented by solving the Tn problem.
Nevertheless, as n increases, the computational time
becomes very high and it is expensive to calculate the
optimal solution to the Tn problem. Thus, it is necessary
to design a more efficient solution scheme.

4. Proposed scheme

In order to decrease the execution time to solve the Tn

problem, we will implement an approximation scheme
inspired by the SS method, which reduces the number of
variables of the Tn problem. In this way, we can obtain
much better approximations in less execution time, as will
be shown further.

The traditional SS generates a set of solutions; they
are improved and recombined until competitive solutions
are found. Our proposal takes that idea, but it is not
applied to solutions, but to sets of points that generate
linear programming problems; i.e., it takes a set of points
obtained after solving a T problem. After that, the set
of points is improved and combined with another set of
points to generate a new linear programming problem
and so on, until a competitive solution of the linear
programming problem is obtained. In the next section
such a scheme is detailed.

We construct a sequence of LP problems using
Algorithm 2. Next, we give the detailed steps.

Step 1.

(a) Take appropriate n ∈ N.

(b) Determine Xn and Y n, where ∪nX
n and ∪nY

n are
dense denumerable sets in X and Y , respectively, for
rn given in Remark 2.

(c) Define Sn = Xn × Y n.

Algorithm 2. Proposed algorithm.
Step 1. For a specific n, construct and resolve the Tn

problem. Take as a reference set all the points, where μ̂n

is different from zero. (Inspired by Step 1 of SS.)

Step 2. Using the points found in Step 1, add additional
points based in a deterministic method. (Inspired by
Step 2 of SS.)

Step 3. Construct and resolve the LPn+1 problem. Take as
a new reference set all the points, where μ̂n+1 is different
from zero. (Inspired by a combination of Steps 3 and 4 of
SS.)

Step 4. Repeat Steps 2 and 3 until reaching a specified
iteration limit. (Similar to Step 5 of SS.)

(d) Construct and solve the Tn problem:

Tn : minimize
∑

(x,y)∈Sn

cxyλ
n
xy

subject to
∑
y∈Y n

λn
xy = anx ∀x ∈ Xn,

∑
x∈Xn

λn
xy = bny ∀y ∈ Y n,

λn
xy ≥ 0 ∀(x, y) ∈ Sn,

where

cxy = c(x, y),

anx = νn1 ({x}) ,
bny = νn2 ({y})

with x ∈ Xn and y ∈ Y n.

(e) Define

μ̂n(·) =
∑

(x,y)∈Sn

λ̂n
xyδ(x,y)(·),

where {λ̂n
xy} is the optimal solution of the Tn

problem.

(f) Compute

Rn =
{
(x, y)|(x, y) ∈ Sn and μ̂n(x, y) �= 0

}
.

(Note that Rn ⊂ Sn and λ̂xy �= 0 whenever
μ̂n(x, y) �= 0.)

Step 2.

(a) For each (x, y) ∈ Rn, there exist points (x∗, y∗) such
that

x∗ = argmin
x

d(x, x′)

for all (x′, y′) ∈ Rn with x �= x′, where

argmin
a

f(a) := {a|∀b, f(a) ≤ f(b)}.



A metaheuristic for a numerical approximation to the mass transfer problem 761

If d(y, y∗) > rn, take the set

Hn
(x,y) = {x, x∗} × (Br(y) ∩Br(y

∗)) ∩ Y n,

where r = d(y, y∗) and Br(z) is the open
neighborhood with center in z and radius r.

(b) Define the set

Ṙn =

⎛
⎝ ⋃

(x,y)

Hn
(x,y)

⎞
⎠ ∪Rn.

(Note that Ṙn ⊂ Sn.)

(c) Obtain Xn+1 and Y n+1 where ∪n+1X
n+1 and

∪n+1Y
n+1 are dense denumerable sets in X and Y

respectively, for rn+1 given by Remark 2.

(d) Define Sn+1 = Xn+1 × Y n+1.

(e) For each (x, y) ∈ Ṙn, take

Nn
(x,y) = Brn+1(x, y) ∩ Sn+1.

(f) Define the set

R̃n+1 =
⋃

(x,y)∈Ṙn

Nn
(x,y).

(Note that R̃n+1 ⊂ Sn+1.)

Step 3.

(a) Construct and solve the following LPn+1 problem:

LPn+1 : minimize
∑

(x,y)∈˜Rn+1

cxyλ
n+1
xy

subject to
∑

y:(x,y)∈˜Rn+1

λn+1
xy = an+1

x

∀x s. t. (x, y) ∈ R̃n+1,∑
x:(x,y)∈˜Rn+1

λn+1
xy = bn+1

y

∀y s. t. (x, y) ∈ R̃n+1,

λn+1
xy ≥ 0 ∀(x, y) ∈ R̃n+1,

where cxy = c(x, y), an+1
x = νn+1

1 ({x}) and
bn+1
y = νn+1

2 ({y}) with (x, y) ∈ R̃n+1.

(b) Define

μ̂n+1(·) =
∑

(x,y)∈ ˜Rn+1

λ̂n+1
xy δ(x,y)(·), (5)

where {μ̂n+1} is the optimal solution of the LPn+1

problem.

(c) Take

Rn+1 =
{
(x, y)|(x, y) ∈ R̃n+1, μ̂n+1(x, y) �= 0

}
.

(Note that Rn+1 ⊂ Sn+1.)

Step 4. Repeat Steps 2 and 3 until a stop condition is
reached.

Remark 4. Let be (R̃n+1)c = Sn+1 − R̃n+1. If the
variables λn+1

xy with (x, y) in (R̃n+1)c are the non basic
variables of the Tn+1 problem, then the set of the extreme
points of the Tn+1 problem coincides with the set of the
extreme points of the LPn+1 problem (see Bazaraa et al.,
2010, Chapter 3).

5. Convergence theorem

The sequence of the LPn+1 problems generated by
the previous algorithm converges due to the following
theorem.

Theorem 2. Let Tn+1 be the T problem that discretizes
the MK problem and let LPn+1 be the LP problem gener-
ated using Algorithm 2. Then

min(Tn+1) = min(LPn+1).

Proof. We define the sets

FT = {{λxy} | {λxy} is a feasible solution to

the Tn+1problem
}

and

FLP = {{λxy} | {λxy} is a feasible solution to

the LPn+1 problem
}
.

By Remark 4, we have

FT = FLP

and
min(Tn+1) = min(LPn+1).

�

Corollary 1. Let {μ̂n+1} be a sequence of measures given
in Eqn. (5). Then the sequence {〈μ̂n+1, c〉} converges to
min(MK).

Proof. It is a consequence of Theorem 3.6 proved by
Gabriel et al. (2010) and the previous theorem. �

Remark 5. The order of convergence of the proposed
scheme is given by

|〈μ̂, c〉 − 〈μ̂n, c〉| ≤ εn.
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6. Numerical examples

In this section, we illustrate the proposed scheme using
three cost functions. The first one was previously studied
by Gabriel et al. (2010) as well as Anderson and Philpott
(1984), the second one by Gabriel et al. (2010), and the
third one by Anderson and Nash (1987). These examples
are used because they have an exact solution and they can
be compared with the approximated solutions obtained by
our proposal. The examples are designed with two goals:
the first is to graphically present the sets generated using
the proposed algorithm and the second is to compare the
number of variables of the original T problem with the
number of variables of the LP problem generated under
the new scheme proposed in this work.

In the examples, we consider X = Y = [0, 1]
with the usual topology and ν1 = ν2 as the Lebesgue
measure. These examples satisfy Assumption 1 since the
cost functions are polynomial functions and X and Y are
compact metric spaces.

We take the sets

Xn = Y n =

{
k

2n

∣∣∣0 ≤ k ≤ 2n
}
.

The free software R was used to optimize the
respective LP problems.

6.1. Graphical illustration of the proposed scheme.
First, we graphically illustrate the sets given by the
algorithm proposed in Section 4 in order to show its
performance at each iteration. We start the algorithm with
n = 3. Despite the fact that n = 3 is a small value, it is
suitable to show the sets Sn, R̃n and Rn+1. It is necessary
to emphasize that if we take n larger than 3, it is difficult
to visualize the sets.
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Coupling for the MK problem
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Fig. 1. Optimal coupling using the cost function c(x, y) =
x2y − xy2.

Example 1. Let c(x, y) = x2y−xy2 be the cost function.
Gabriel et al. (2010) as well as Anderson and Philpott
(1984) showed that its optimal coupling is given by

Graph(f) = {(t, f(t)|t ∈ [0, 1]} ,

where

f(t) =

{
1
4 + t for t ∈ [0, 34 ),
1− t for t ∈ [ 34 , 1]

(see Fig. 1).
In the first image of Fig 2, we show the points in the

set S3 (Step 1(c)), the points in the set R3 (Step 1(f)) and
the points in the set R̃4 (Step 2(f)). In the second and third
images of Fig. 2, we show the next two iterations. In the
other images of Fig. 2, we only show the points in sets R6,
R7 and R8 because they are too close and it is difficult to
visualize them. We can observe that the points in R8 are
over the graph of the optimal coupling shown in Fig. 1.

�
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Fig. 3. Coupling using the cost function c(x, y) = (2y − x −
1)2(2y − x)2.

Example 2. Let c(x, y) = (2y − x − 1)2(2y − x)2 be
the cost function. Its coupling is studied by Gabriel et al.
(2010) and it is given by

Graph(f1) ∪Graph(f2),

where f1 : [0, 1] → [0, 1] and f2 : [0, 1] → [0, 1] with

f1(t) =
t

2
, f2(t) =

t+ 1

2

(see Fig. 3).
In the first panel of Fig. 4, we show the points in the

set S3 (Step 1(c)), the points in the set R3 (Step 1(f)) and
the points in the set R̃4 (Step 2(f)). In the second and third
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Fig. 2. Solution of the cost function c(x, y) = x2y − xy2.

panels of Fig. 4, we show the next two iterations. In the
other panels of Fig. 4, we show those points in the sets
R6, R7 and R8, respectively. We can observe, as in the
previous example, that the points in R8 are over the graph
of the optimal solution shown in Fig. 3. �

6.2. Comparison of the proposed algorithm against
the previous scheme. Now, we compare the scheme
proposed in the algorithm of Section 4 with the one by
Gabriel et al. (2010). By Corollary 1 and Remark 5, the
results and the bound of the error are the same; however,
we make the comparison based on the number of variables
of the Tn and LPn problems.

Note that card(Xn) = card(Y n) = 2n. Then the
Tn problem has (2n)(2n) variables. Thus, solving the Tn

problem produces a very high computational cost when n
increases.

In these examples, we start with n = 8, because it is
more appropriate to obtain better approximations and it is
not necessary visualize the sets R̃n.

Example 3. (Continuation of Example 1) Anderson and
Philpott (1984) proved that the optimal value for the MK
problem given in Example 1 is − 9

256 ≈ −0.03515625. In

Table 1 we show the number of elements in R̃n that are

taken to construct the LPn problem. We can see that the
number of variables of the LPn problem is remarkably
lower than the number of variables of the Tn problem.
The results for the T10 and T11 problems are not reported
because of the high cost of their implementation. The
results of the LP8 problem are not presented because they
require the solution of the T7 problem.

Table 1. Comparison using the cost function c(x, y) = x2y −
xy2.

Problem No. of variables Error Value

T8 65536 9.5× 10−7 -0.0351553
LP8 —– —– —–
T9 262144 2.4× 10−7 -0.0351560
LP9 2560 2.4× 10−7 -0.0351560
T10 1048576 —– —–
LP10 5120 6.0× 10−8 -0.03515619
T11 4194304 —– —–
LP11 10240 1.5× 10−8 -0.03515624

�

Example 4. Let c(x, y) = 4x2y − xy2 be the cost
function. This function was studied by Anderson and
Nash (1987), and its optimal value is 107

432 ≈ 0.2476852
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Fig. 4. Solution of the cost function c(x, y) = (2y − x− 1)2(2y − x)2.

while its optimal solution has support on the set

Graph(f) = {(t, f(t))|t ∈ [0, 1]}

with

f(t) =

⎧⎪⎪⎨
⎪⎪⎩

2
3 + 4

3 t for [0, 14 ),

2− 4t for [ 14 ,
1
3 ),

1− t for [ 13 , 1].

It is shown in Fig. 5(a).
In Table 2, we show the number of variables in

the Tn and LPn problems. We can note again that the
dimension of the LPn problem is considerably lower than
that of the Tn problem. The results for the T11 problem
are not reported due to the related high computational
cost. Finally, in Fig. 5(b) we can observe than the points in
R11 are in the support of the optimal coupling for the MK
problem. The results of the LP8 problem are not presented
because they require the solution of the T7 problem.

�

7. Conclusion

An approximation scheme for the MK problem was
studied by Gabriel et al. (2010), who approximated the

Table 2. Comparison using the cost function c(x, y) = 4x2y −
xy2.

Problem No. of variables Error Value

T8 65536 2.5× 10−6 0.2476877
LP8 —– —– —–
T9 262144 6.4× 10−7 0.2476858
LP9 2040 6.4× 10−7 0.2476858
T10 1048576 1.6× 10−7 0.2476853
LP10 4080 1.6× 10−7 0.2476853
T11 4194304 —– —–
LP11 8160 4.2× 10−8 0.2476852

solution to the MK problem through the solution to the
T problems. This approximation is natural. However,
the LP problems generated by the T problems can be
very large and computationally expensive. In this work,
such a previous scheme is improved using a metaheuristic
inspired by scatter search. The LP problems generated
by the proposed metaheuristic have the same solution, but
they are significantly less expensive than the T problem.
Such performance implies that it is possible to obtain
better approximations in less time. The algorithm was
implemented using the free software R and tested with
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Fig. 5. Coupling (a) and approximated solution (b) to the cost function c(x, y) = 4x2y − xy2.

some examples previously reported in the specialized
literature.
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Mèrigot, Q. (2011). A multiscale approach to optimal transport,
Computer Graphics Forum 30(5): 1583–1592.

Monge, G. (1781). Mémoire sur la théorie des déblais et des
remblais, De l’Imprimerie Royale, Paris.



766 M.L. Avendaño-Garrido et al.

Rachev, S. (1991). Probability Metrics and the Stability of
Stochastic Models, Wiley, New York, NY.
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