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In the frame structure of stacker cranes harmful mast vibrations may appear due to the inertial forces of acceleration or the
braking movement phase. This effect may reduce the stability and positioning accuracy of these machines. Unfortunately,
their dynamic properties also vary with the lifted load magnitude and position. The purpose of the paper is to present a
controller design method which can handle the effect of a varying lifted load magnitude and position in a dynamic model
and at the same time reveals good reference signal tracking and mast vibration reducing properties. A controller design case
study is presented step by step from dynamic modeling through to the validation of the resulting controller. In the paper the
dynamic modeling possibilities of single-mast stacker cranes are summarized. The handling of varying dynamical behavior
is realized via the polytopic LPV modeling approach. Based on this modeling technique, a gain-scheduled controller design
method is proposed, which is suitable for achieving the goals set. Finally, controller validation is presented by means of
time domain simulations.
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1. Introduction

These days, the advanced stacker cranes of highly
automated storage/retrieval systems (AS/RS) in
warehouses must meet strict requirements, e.g., a
fast working cycle and reliable, economical operation.
This material-handling equipment often has more than
one ton pay-load capacity with a 50m lifting height,
250m/min velocity and 2m/s2 acceleration in the
direction of the aisle. Consequently, the dynamic load
on the frame structure of these machines is very high.
Due to the economical construction and low energy
consumption operation of stacker cranes, the dead-weight
of these machines is often reduced. The reduction in
dead-weight may result in decreasing the stiffness of the
frame structure. These structures are more responsive to
dynamical loads; therefore, during operation, undesirable
vibrations, low frequency and high amplitude mast sways
may occur because of the different inertial forces. The
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high amplitude mast vibrations may reduce the stability
and positioning accuracy of the stacker crane and, in an
extreme case, they may damage the structure.

For the above-mentioned reasons, it is necessary
to reduce undesirable mast vibrations by controlling
the traveling motion of the stacker crane (i.e., the
motion towards the aisle of the warehouse). The
reduction in these harmful mast vibrations has been a
widely studied area within the dynamics of material
handling machinery. For example, Heptner (1970)
introduced several passive elements and vibration damper
equipment. However, most publications attempt to
reduce the structural vibrations by applying various
closed-loop control techniques, e.g., pole placement with
full state feedback (Dietzel, 1999) or fuzzy control (Fang
et al., 2008). In some papers, shape optimization of
a prescribed motion-function (as a reference signal) or
the determination of an optimal acceleration time are
introduced to achieve the desired result (see Schumacher,
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1994). Bachmayer et al. (2008; 2009) demonstrate
that the flatness based trajectory planning method is
also applicable to vibration free mast positioning of
stacker cranes. Feedforward control techniques, trajectory
planning and filtering methods of stacker cranes can
also be found in the works of Görges et al. (2009) and
Staudecker et al. (2008). Sasaki et al. (2009) introduce
a two-degree-of-freedom control system consisting of
a feedforward controller based on an inverse system
and a feedback controller suppressing the vibrations
and stabilizing the crane. In the paper of Schindele
and Aschemann (2014) an adaptive LQR-control method
while in that by Aschemann et al. (2011) a robust control
one are presented for flexible rack feeders.

Motion control as well as the estimation of structural
vibrations during the design period of stacker cranes or
dynamic investigation of an existing structure, require
a dynamic model of a flexible structure. This model
must be sufficiently accurate and at the same time
simple to fulfill the requirements of control synthesis
techniques. However, the dynamical properties, e.g.,
resonance frequencies, mode-shapes, etc., depend on the
magnitude and position of the lifted load. The dynamic
model must also take this effect into consideration. The
main contribution of this paper is a linear parameter
varying (LPV) modeling method applied for this purpose.
In this model, the plant state space matrices are assumed
to depend affinely on the time varying parameter, i.e., the
lifted load position. Based on this modeling approach,
a gain-scheduled controller is introduced with guaranteed
H∞ performance.

The structure of the paper is as follows. In Section 2,
after the introduction of single-mast stacker cranes, the
dynamic modeling possibilities of these machines are
summarized. The effect of varying lifted load properties
is taken into consideration via the LPV method. In
Section 3, the model order reduction method of dynamic
models for LPV systems is presented, which is necessary
to generate a proper LPV model. The controller synthesis
method which generates a gain-scheduling controller with
guaranteed H∞ performances is introduced in Section 4.
The operation of the designed control system is illustrated
through simulation examples in Section 5.

2. Dynamic modeling of single-mast stacker
cranes

A schematic drawing of a single-mast stacker crane
with its main components is shown in Fig. 1. The
main structural unit of stacker cranes is the mast, which
is a rectangular-shaped box-girder formed by precisely
manufactured and welded steel sheets. For greater
resistance to torsion and bending effects, the box-girder
is reinforced inside by means of longitudinal stiffeners
welded to the web-plate of the box-girder and horizontal

diaphragms placed evenly along the length of the mast.
The mast is connected to the bottom frame (chassis) via
bolted connection.

Fig. 1. Single-mast stacker crane.

The bottom frame is also a box-girder structure
formed by welded steel sheets and reinforced with ribbing
welded inside at regular intervals. The drive wheel and
the free wheel headers are bolted to either end of the
bottom frame via welded end-plates. The drive and free
wheels run on the hot rolled steel rail, which is fastened to
the floor of the warehouse. The purpose of the mobile
lifting carriage (cradle) is to move the payload in the
lifting direction and to perform the pick-up and deposit
cycles with the load handling unit fitted on the carriage.
The lifting carriage is a welded frame structure guided by
special rollers running on the vertical guide rails of the
mast.

The dynamic modeling of the single-mast stacker
crane is based on the planar finite element model (FE
model) shown in Fig. 2. In the model, the continuum
prismatic beam sections of the mast are modeled by
two-dimensional finite elements (2D beams). The other
components are modeled by lumped masses, i.e., the total
mass of the bottom frame (with the drive wheel and the
free wheel headers, the electric box, etc.), the masses of
the hoist unit and the top guide frame. The total mass
of the bottom frame is denoted by msb, the mass of the
hoist unit by mhd and the mass of the top guide frame by
mtf . The effect of the lifted load, i.e., the mass of payload
(mp) and the lifting carriage (mlc), is also taken into
consideration by a lumped mass. However, the position of
this lumped mass (hh) may vary over time and defines the
lifting height. With the varying lifted load position, the
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Table 1. Main parameters of the stacker crane.
Mast-height hm = 45m
Height of hoist unit hhd = 3.5m
Payload mp = 1200 kg
Mass of lifting carriage mlc = 410 kg
Mass of hoist unit mhd = 470 kg
Mass of top guide frame mtf = 70 kg
Mass of mast mm = 5998 kg
Mass of bottom frame msb = 2418 kg

Fig. 2. Finite element model of the stacker crane.

length of finite elements surrounding the lifted load also
changes. Therefore, not only the parameters but also the
structure of the governing equations of motion depend on
the lifting height. The main parameters of stacker crane
are presented in Table 1.

The differential equation of motion of the
above-mentioned finite element model can be written as

Mq̈ +Kq̇ + Sq = u, (1)

where M is the mass matrix, K is the damping matrix, S

is the stiffness matrix, q =
[
q1 . . . qnd

]T
is the vector

of generalized displacements, q̇ and q̈ are the derivatives
of q, i.e., the generalized velocity and acceleration vectors,
and u is the vector of the external forces.

After the eigenproblem for Eqn. (1) has been solved,
the eigenvectors can be arranged into the matrix Φ with
respect to the ascending order of the related natural
frequencies. Using this matrix, the inverse modal
transformation q = Φp is defined, where p is the vector
of modal displacements with nd components, and Φ is
the so-called modal matrix. Substitute the generalized
displacement vector q into Eqn. (1), and then multiply

this equation by the transpose of Φ. If the matrix Φ is
normalized to the mass matrix M , then ΦTMΦ = I . In
this way, the differential equation of motion (1) can be
rewritten as

p̈+Kpṗ+ Λp = Fpu, (2)

where p is the vector of modal displacements, ṗ and
p̈ denote the modal velocity and acceleration vectors,
respectively, and the matrices are the following: Kp =
ΦTKΦ, Λ = ΦTSΦ and Fp = ΦT . In the equation, Λ is
the diagonal matrix of the squares of natural frequencies
relating to the natural modes applied.

Since most control design methods use the state
space representation of the model, the governing equation
of motion (2) must be transformed into the state space
form. The input signal of above-mentioned FE model is
the external force u = Ft, i.e., the tractive force generated
by the travel unit, acting on the lumped mass msb in
the horizontal direction. This model is applied in the
synthesis of the controller which realizes the positioning
control of single-mast stacker cranes besides reduced mast
vibrations.

The state space representation of a linear time
invariant (LTI) system in general is described by the
following equations:

Σ :

⎧
⎪⎨

⎪⎩

ẋ = Ax+B1d+B2u,

z = C1x+D11d+D12u,

y = C2x+D21d,

(3)

where x, u, y, d, z are the state vector, control input,
measured output, disturbance input and performance
output vectors, respectively.

Define the state vector

x =
[
ṗ p

]T
. (4)

Using the definition above, the equations of state
dynamics can be formalized as

[
p̈
ṗ

]
=

[−Kp −Λ
I 0

] [
ṗ
p

]
+

[
Fp

0

]
u. (5)

The first output of state space representation is
denoted by z and it is the inclination of mast, i.e., the
position difference between the undermost point of the
mast and the mast tip q1 − qnd

. This output is used for
describing and investigating mast vibrations. The second
output is denoted by y and equals the horizontal position
of the bottom frame, i.e., the generalized displacement q1.

An LTI state space presentation is valid only for
models with a fixed lifted load magnitude and position.
However, the aim of modeling is to generate a dynamic
model which is able to take the above-mentioned
parameter dependence into account. Since the lifted load
magnitude and position can be measured in real time, the
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linear parameter varying (LPV) modeling approach has
been chosen to achieve this aim. LPV systems are linear
state space models whose matrices depend on the vector
of time varying parameters ρ (t) (Shamma, 1988; Leith
and Leithead, 2000). Hence, LPV systems are defined by
state space equations as follows.

Definition 1. (LPV system) The compact set P ⊂ R
S and

the continuous matrix functions A : RS → R
n×n, B :

R
S → R

n×nu , C : RS → R
ny×n, D : RS → R

ny×nu

are given. An n-th order LPV system is given by

Σ (ρ) :

{
ẋ = A (ρ)x+B (ρ)u,

y = C (ρ)x+D (ρ)u,
(6)

where ρ ∈ P is the so-called scheduling parameter vector.

Unfortunately, due to the complex structure of the
stacker crane mast (several kinds of sections with different
cross-sectional properties, lumped masses, etc.), not only
the parameters but also the form of governing equations
of motion vary with the lifted load position. Another
difficulty is that the large scale dynamic model with high
degrees of freedom requires model order reduction before
control design. Thus, it is not possible to generate the LPV
model of the investigated single-mast stacker crane in one
closed form. To solve this problem, a polytopic LPV
modeling approach is applied (see Apkarian et al., 1995).
The following definitions and considerations are useful to
formulate the polytopic LPV system.

Definition 2. (Matrix polytope) A matrix polytope is
defined as the convex hull of a finite number of matrices
Mi with the same dimensions. This convex hull can be
generated as the convex combination of matrices Mi, i.e.,

Conv {Mi, i = 1, . . . , nv}

:=

{
nv∑

i=1

αiMi : αi ≥ 0,

nv∑

i=1

αi = 1

}

. (7)

The investigations are restricted to such LPV systems
where the state space matrices A(ρ), B(ρ), C(ρ)
and D(ρ) depend affinely on the scheduling parameter
vector ρ and this parameter vector varies in a polytope
Θ of vertices ρ1, ρ2, . . . , ρnv , i.e., ρ ∈ Θ :=
Conv {ρ1, ρ2, . . . , ρnv}. A consequence of this restriction
is that the state space matrices A(ρ), B(ρ), C(ρ) and
D(ρ) range in a polytope of matrices whose vertices are
the images of the vertices ρ1, ρ2, . . . , ρnv . That is,

(
A(ρ) B(ρ)
C(ρ) D(ρ)

)

∈ Conv
{(

Ai Bi

Ci Di

)
:=

(
A(ρi) B(ρi)
C(ρi) D(ρi)

)
,

i = 1, . . . , nv

}
. (8)

Using this property, the definition of polytopic LPV
systems (see Apkarian et al., 1995) can be formulated as
follows.

Definition 3. (Polytopic LPV system) An LPV system
is called “polytopic” when it can be represented by state
space matrices A(ρ), B(ρ), C(ρ) and D(ρ), where the
parameter vector ρ ranges over a fixed polytope and the
dependence of A(·), B(·), C(·) and D(.) on ρ is affine.

The main benefit of this modeling approach is
that the determination of the LPV model requires the
knowledge of state space matrices only in fixed vertices
of the parameter space, i.e., the modeling is based on local
LTI models with a “frozen” parameter vector ρ.

3. Model order reduction for the LPV
system

As mentioned before, the aim of dynamic modeling
of single-mast stacker cranes is to generate a dynamic
model which is sufficiently accurate and at the same time
simple to fulfill the requirements of control synthesis
techniques. Due to the growth in the application
of advanced modeling techniques (e.g., FE modeling),
complex flexible structures, such as single-mast stacker
cranes, are usually modeled by medium- or large-scale
dynamic models with numerous degrees of freedom.
However, applying these high-dimensional dynamic
models in modern control analyses and syntheses is
extremely inefficient. In most cases, the controller order
is related to the order of the controlled system causing
difficulties in controller realization. Modern control
synthesis algorithms may also fail in controller calculation
in the case of large-scale models.

Model order reduction for LPV systems is an
extensively studied area with many challenges. Most of
the methods introduced in the literature are based on the
reduction of local LTI models of gridded LPV systems
(Caigny et al.., 2014; Poussot-Vassal and Demourant,
2012; Poussot-Vassal and Roos, 2011; Theis et al., 2015).
Since the internal representation of the dynamics, i.e.,
the basis of the state space, at different grid points
may vary due to the local reduction, an additional
state transformation is required to recover state space
consistency. After this transformation, the interpolation
of individual LTI models can be performed in order to
construct the LPV model. In this section, first the model
order reduction of local LTI models is presented and after
that, a similarity transformation is introduced to project
the models onto the same basis. Because of the polytopic
LPV modeling approach, the interpolation step can be
omitted.

Since model order reduction for LTI systems is an
active research field, several kinds of methods can be
found in the literature (Benner et al., 2003; Nowakowski
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et al., 2013). These methods can be grouped into three
main classes:

• classical reduction methods (e.g., modal truncation),

• singular value decomposition (SVD) based methods
using the controllability and observability Gramians,

• moment-matching methods based on Krylov
subspaces.

The model order reduction methods listed above can be
classified as projection based methods. These generate
the reduced order model via projecting the original system
onto a reduced one using two projection matrices whose
columns form bases for relevant subspaces of the state
space (see the problem below).

Problem 1. (Projection based approximation) The
following LTI system with x ∈ R

n is given:

Σ :

{
ẋ = Ax+Bu,

y = Cx +Du.
(9)

The aim of the projection based approximation problem is
to find Tl ∈ R

r×n, Tr ∈ R
n×r (with TlTr = Ir, r � n)

left and right projectors such that the reduced order system
Σ̂ accurately approximates Σ. The the reduced order
system Σ̂ is defined as

Σ̂ :

{
˙̂x = Âx̂+ B̂u,

ŷ = Ĉx̂+ D̂u,
(10)

where x̂ ∈ R
r. Here the state space matrices can be

calculated as Â = TlATr, B̂ = TlB, Ĉ = CTr and
D̂ = D.

Projection methods differ in the way the projection
matrices are chosen. Here the modal truncation (MT)
method has been chosen to generate these matrices. The
purpose of the MT method is to project the dynamics
of the original model onto an A-invariant subspace
corresponding to the dominant modes of the system.
These dominant modes can be selected by the eigenvalues
of A. The selection of the dominant modes plays an
important role since the accuracy of approximation is
determined by these modes. In the case of the investigated
stacker crane model, the first two eigenvalues (with the
smallest absolute values) correspond to the rigid body
motion of the stacker crane, which must be retained in
the reduced model. Further dominant vibrational modes
(normal modes) corresponding to the next few complex
conjugate eigenvalue pairs are also involved in the reduced
model. In this way, the accuracy of the reduced model in
the relevant frequency range will be acceptable.

As presented by Theis et al. (2015) in the case
of LPV systems, the eigenvalues and eigenvectors of

the matrix A(ρ) are also parameter dependent and
hence the transformation into a modal form would also
depend on the scheduling parameter vector ρ. The
use of this global parameter varying transformation
introduces an explicit dependence on the parameter
variation rate into the state space representation of the
LPV system. This parameter variation rate dependent
term may produce large off-diagonal elements in the
transformed system matrix Ã(ρ, ρ̇) for non-zero rates,
which makes the decoupling impossible. Due to this
problem, the above-mentioned LTI model order reduction
method is applied in the fixed points of the parameter
space (i.e., at the vertices ρ1, ρ2, . . . , ρnv of polytope
Θ introduced in Section 2), rather than the parameter
varying transformation. First a set of LTI models (Σi, i =
1, . . . , nv) is generated and the corresponding projector
matrices Tli and Tri are calculated. After applying
these projector matrices, a set of locally reduced models
(Σ̂i, i = 1, . . . , nv) is given. However, a modal state
space basis calculated for an individual LTI model is
not unique; therefore, the consistence of state space
representations is not ensured. The physical meaning of
state vector components may vary point by point. This
makes it impossible to generate the polytopic LPV model
from the local models. Therefore, an additional linear
transformation is needed to force the states to belong to
the same basis.

For this purpose, several methods can be found in
the literature (see, e.g., Poussot-Vassal and Demourant,
2012; Poussot-Vassal and Roos, 2011; Theis et al.,
2015). From the state space projection presented in the
previous section, it is known that xi = Trix̂i. By the
method introduced by Poussot-Vassal and Roos (2011)
the following linear transformation is defined: x̂∗

i =
RTxi, R ∈ R

n×r. The aim of this projection method is
to force the bases of all state vectors x̂∗

i to be the same.
For this purpose, the linear transformation R must be
generated in such a way that

RTTr1x̂1 = RTTr2x̂2 = · · · = RTTrnv x̂nv = x̂∗. (11)

Introducing the notation x̂i = Z−1
i x̂∗ (where Zi =

RTTri), each transformed reduced-order system Σ̂∗
i is

given as

Σ̂∗
i : (A∗

i , B
∗
i , C

∗
i , D

∗
i ), (12)

where A∗
i = ZiTliAiTriZ

−1
i , B∗

i = ZiTliBi, C∗
i =

CiTriZ
−1
i and D∗

i = Di. With the proper selection of
R, the above-mentioned transformation forces the local
state vectors to have the same bases, which makes the
generation of polytopic LPV model possible.

The matrixR of linear transformation can be selected
in several ways. It should span all the dynamics of the
local models. For example, this can be the most significant
transformations selected by singular value decomposition
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(SVD) as follows:

USV T = svd
([
Tr1, . . . , Trnv

])
, (13)

where Tri denotes the local projectors corresponding to
each local model. In order to keep the most significant
transformations for the columns of R, the r first columns
of the unitary matrix U have been chosen, i.e., R = Ur.

The verification of the consistenc of state space bases
can be performed by checking the modal trajectories (see
Poussot-Vassal and Demourant, 2012), i.e., the trajectory
of each eigenvalue λj with respect to the scheduling
parameters ρ in the complex plane. In the case of
consistent state space bases, these trajectories must have
regular shapes. Another simple and intuitive idea to
verify model consistenc is to inspect the regularity of
the behavior of system matrix elements with respect to
parameter variation.

In Fig. 3, the system matrices of an example stacker
crane model are analyzed and the trajectories of the
system matrix elements are shown. In the example,
D(ρ) = 0. The order of the reduced model is r = 4,
and the numbers of input and output variables are nu = 1
and ny = 2, respectively. The first output variable is
mast inclination while the second output is the position
of the stacker crane. The lifting height as scheduling
parameter varies between 4m and 44m. From Fig. 3 it
can be concluded that the matrix elements vary regularly
with respect to the lifting height. Any sudden change or
discontinuity cannot be seen in the functions of the matrix
elements. Therefore, the consistency of dynamic models
in the example of Fig. 3 is ensured point-by-point.

4. LPV control design with guaranteed H∞
performance

In this section, discussion of LPV control design with
guaranteed H∞ performance is presented (see, e.g.,
Apkarian et al., 1995; Packard and Balas, 1997; Bokor
and Balas, 2005). Hoffmann and Werner (2015b) give
a detailed summary of LPV control design methods and
their application areas. Further interesting applications of
LPV modeling and control can be found in the papers or
Hassanabadi et al. (2016), Hoffmann and Werner (2015a)
or Péni et al. (2015).

The most important tool in the formulation and
derivation of the LPV controller is the bounded real
lemma (see, e.g., Zhou et al., 1996). It is originally valid
for LTI systems (Gahinet and Apkarian, 1994). However,
it can be extended to LPV systems using the notation of
quadratic H∞ performance (see Apkarian et al., 1995).

Definition 4. (Quadratic H∞ performance) The LPV
system of Definition 1 has quadratic H∞ performance
γ > 0 iff there exists a symmetric matrix X � 0 such
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Fig. 3. Structure of system matrices: A(ρ) (a), B(ρ) (b),
C(ρ) (c).
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that
⎡

⎣
A(ρ)TX +XA(ρ) XB(ρ) C(ρ)T

B(ρ)TX −γI D(ρ)T

C(ρ) D(ρ) −γI

⎤

⎦ ≺ 0 (14)

for all admissible values of the parameter vector ρ. In this
case, the Lyapunov function V (x) = xTXx establishes
global asymptotic stability and the induced L2-norm of
the operator mapping from input to output is bounded by
γ along all possible parameter trajectories ρ(t).

Definition 4 gives an infinite number of constraints
because it must be valid for all parameter vector values
ρ ∈ Θ. However, as shown by Apkarian et al.
(1995) in the case of polytopic LPV systems, the infinite
number of constraints can be reduced to a finite set of
matrix inequalities. Due to the convexity property of the
polytope, the inequality (14) will hold for all A(ρ), B(ρ),
C(ρ) and D(ρ), ρ ∈ Θ, if and only if it holds at the
vertices (Ai, Bi, Ci, Di), i = 1, . . . , nv.

Before the implementation of LPV control synthesis,
the control configuration for the H∞ framework, i.e.,
the weighting strategy of the control design, must be
configured, as shown in Fig. 4. In the figure, G∗

i denotes
the transfer function of the reduced order dynamic model
(12) corresponding to the vertex ρi of polytope Θ:

G(s)∗i = C∗
i [sI −A∗

i ]
−1

B∗
i . (15)

The mast vibration signal of dynamic model z is preserved
for time domain simulation purposes. The reference
signal r in the introduced augmented plant is the
horizontal position demand of the stacker crane. The ideal
model of the closed-loop system is represented by the
transfer function Wref (i.e., the so-called model matching
function). Usually, this function is a second-order transfer

one with free parameters ωr and ζ:

Wref =
ω2
r

s2 + 2ζωrs+ ω2
r

. (16)

In this way, the bandwidth and damping of the ideal
closed-loop transfer function can be adjusted. The error
between the ideal and the actual closed-loop transfer
functions is weighed by the penalty function We. The
value of this penalty function should be large in a
frequency range where small errors are desired and small
where larger errors can be tolerated. Usually, a more
accurate model is desired in the low frequency range, and
therefore We is a low pass filter

We =
Ae

1 + Tes
. (17)

The control input is limited using the performance
weighting function Wu. With the help of this weight,
larger control signals can be penalized and thereby the
control activity can be minimized. The Wu transfer
function is a high pass filter with parameters Au and Tu:

Wu =
Aus

1 + Tus
. (18)

In general, the purpose of the weighing function Wn

is to reflect sensor noise. For simplicity of calculation as
well as reduction of conservatism, in the actual controller
design, the setup it is omitted. Thus, the transfer function
matrix of an augmented plant for control design can be
expressed as

⎡

⎣
ze
zu
ȳ

⎤

⎦ =

⎡

⎣
WeWref −WeG

∗
i

0 Wu

I −G∗
i

⎤

⎦
[

w̄
u

]
, (19)

where w̄ = r is the disturbance input of the augmented
plant, z̄ = [ze zu]

T is the vector of controlled
(performance) outputs and ȳ = r − y is the measured
output.

In this way, the controller design objective according
to Definition 4 is that the induced L2-norm of the operator
mapping of closed-loop system (from w̄ to z̄) must be
bounded by γ, i.e.,

sup
ρ∈Θ

sup
w̄∈L2

‖w̄‖2 �=0

‖z̄‖2
‖w̄‖2

≤ γ, (20)

at the vertices ρi of polytope Θ.
Taking the feedback relation u = Kȳ into account,

the closed-loop transfer function matrix related to the
vertex ρi of polytope Θ can be expressed as follows:

Mi =

[
We

[
Wref −G∗

iK (I +G∗
iK)−1

]

WuK (I +G∗
iK)−1

]

=

[
We (Wref − Ti)

WuKSi

]
,

(21)
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where Si and Ti are the sensitivity and complementary
sensitivity functions, respectively. Thus, the controller
design objective from (20) can be formulated as

‖Mi‖∞ =

∥∥
∥
∥

[
We (Wref − Ti)

WuKSi

]∥∥
∥
∥
∞

≤ γ. (22)

It should be noted that the design objective above is
similar to a mixed sensitivity loop shaping problem.

For further discussion, the state space realization of
an augmented plant in vertex ρi is necessary, which can
be constructed as follows:

Σpi :

⎧
⎪⎨

⎪⎩

˙̄x = Aix̄+B1iw̄ +B2iu,

z̄ = C1ix̄+D11iw̄ +D12iu,

ȳ = C2ix̄+D21iw̄,

(23)

where x̄ =
[
x̂TxT

w

]T
, with x̂ being the state vector of

reduced order stacker crane model and xw the state vector
of weighting functions. Using (8), the polytopic LPV
model of augmented plant can be written as

Σp(ρ) :

⎧
⎪⎨

⎪⎩

˙̄x = A(ρ)x̄ +B1(ρ)w̄ +B2(ρ)u,

z̄ = C1(ρ)x̄+D11(ρ)w̄ +D12(ρ)u,

ȳ = C2(ρ)x̄+D21(ρ)w̄.

(24)

The following assumptions for the generalized
(augmented) LPV plant (24) must be made:

(A1) D22(ρ) = 0 or, equivalently, D22i = 0 for i =
1, . . . , nv.

(A2) B2(ρ), C2(ρ), D12(ρ) and D21(ρ) are parameter
independent or, equivalently, B2i = B2, C2i = C2,
D12i = D12 and D21i = D21 for i = 1, . . . , nv.

(A3) The pairs (A(ρ), B2) and (A(ρ), C2) are
quadratically stabilizable and quadratically
detectable over Θ, respectively.

Assumption (A1) can often be removed by redefining
the plant output ȳ. If Assumption (A2) is not satisfied,
the computation of a solution becomes not easily
tractable. However, this problem can be solved by pre-
or post-filtering of control input u or measured output
ȳ (see Apkarian et al., 1995). The third assumption is
necessary and sufficient to allow quadratic stabilization
of the polytopic LPV plant by an output feedback LPV
controller.

The LPV controller is defined in the following way:

K(ρ) :

{
ẋk = Ak(ρ)xk +Bk(ρ)ȳ,

u = Ck(ρ)xk +Dk(ρ)ȳ,
(25)

where xk ∈ R
nk , ȳ and u are the state, input and

output of the controller associated with the system (24),
respectively.

As shown in Eqn. (25), since the measurements
of ρ(t) are available in real time, the controller can
be constructed with the same parameter dependence as
the plant. Therefore the controller, can adjust to the
variations in the plant dynamics in order to provide
stability and performance along parameter trajectories
ρ(t). In other words, the controller is automatically
gain-scheduled according to the parameter variations.
Hence the closed-loop system Σcl(ρ) = Σp(ρ) ∗ K(ρ)

with the state vector xcl =
[
x̄T xT

k

]T
is given by

Σcl(ρ) :

{
ẋcl = Acl(ρ)xcl +Bcl(ρ)d̄,

z̄ = Ccl(ρ)xcl +Dcl(ρ)d̄,
(26)

where

Acl(ρ) =

[
A(ρ) +B2Dk(ρ)C2 B2Ck(ρ)

Bk(ρ)C2 Ak(ρ)

]
,

Bcl(ρ) =

[
B1(ρ) +B2Dk(ρ)D21

Bk(ρ)D21

]
,

Ccl(ρ) =
[
C1(ρ) +D12Dk(ρ)C2 D21Ck(ρ)

]
,

Dcl(ρ) = D11(ρ) +D12Dk(ρ)D21.

(27)

Applying (14) to (26) leads to a nonlinear (bilinear)
matrix inequality, since the Lyapunov variable is
multiplied by the controller variables. Via changing of
the controller variables presented by Scherer et al. (1997),
a new linear matrix inequality LMI that expresses the
same problem in a tractable way can be found (cf. (29)).
The decision matrices of this LMI are X , Y , Ã, B̃,
C̃ and D̃. Defining the matrices M and N such that
MNT = In − XY (which can be solved via singular
value decomposition and the Cholesky factorization) the
modified controller variables are (in the sequel, the
parameter dependence is suppressed in the notation for
simplicity):

Ã = Y AX + Y B2DkC2X +NBkC2X

+ Y B2CkM
T +NAkM

T ,

B̃ = Y B2Dk +NBk,

C̃ = DkC2X + CkM
T ,

D̃ = Dk.

(28)

Using these variables, the basic characterization
of gain-scheduled output-feedback controllers with
guaranteed H∞ performance is presented in the next
theorem (for more details, see, e.g., the works of Packard
and Balas (1997), Bokor and Balas (2005) or Wu (1996)).

Theorem 1. (Basic characterization) The LPV plant gov-
erned by (24) is given. There exist a gain-scheduled
output-feedback controller (25) enforcing internal stabil-
ity and a bound γ > 0 on the induced L2-norm of
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the closed-loop system (26) iff there exist symmetric ma-
trices X , Y and parameter dependent matrix variables
(Ã, B̃, C̃, D̃) such that for, all ρ ∈ Θ, the following LMI
problem holds:

⎡

⎢
⎢
⎣

M11 (•) (•) (•)
M21 M22 (•) (•)
M31 M32 −γI (•)
M41 M42 M43 −γI

⎤

⎥
⎥
⎦ ≺ 0,

[
X I
I Y

]
� 0,

(29)

where • denotes the symmetric completion of the matrix
and the matrix elements are

M11 = AX +B2C̃ + (•),
M21 = Ã+AT + CT

2 D̃
TBT

2 ,

M22 = Y A+ B̃C2 + (•),
M31 = BT

1 +DT
21D̃

TBT
2 ,

M32 = BT
1 Y +DT

21B̃
T ,

M41 = C1X +D12C̃ ,

M42 = C1 +D12D̃C2,

M43 = D11 +D12D̃D12. (30)
For more details and a proof of this theorem, see the
works of Apkarian and Adams (1998), Chilali and Gahinet
(1995), or Scherer (1995).

With no loss of generality, the LPV controller is
assumed to be polytopic as well. Using the convexity
property of the polytope, LPV controller synthesis can be
performed via the following constructive approach:

• With the help of Theorem 1, generate and solve the
LMI problem corresponding to the nv vertices of
polytope Θ consisting of nv + 1 pieces LMIs:

⎡

⎢
⎢
⎣

M11i (•) (•) (•)
M21i M22i (•) (•)
M31i M32i −γI (•)
M41i M42i M43i −γI

⎤

⎥
⎥
⎦ ≺ 0,

[
X I
I Y

]
� 0,

(31)

where i = 1, . . . , nv , M11i = AiX + B2iC̃i +
(•), . . . , with the notation (30).

• Using these results determine the controller system
matrices (Aki, Bki, Cki, Dki) at each vertex of
polytope Θ by solving the linear system (28).

• Define the LPV controller K(ρ) as the convex

combination of these vertex controllers:
(
Ak(ρ) Bk(ρ)
Ck(ρ) Dk(ρ)

)

:=

{
nv∑

i=1

αi

(
Aki Bki

Cki Dki

)
: αi ≥ 0,

nv∑

i=1

αi = 1

}

. (32)

The resulting polytopic LPV controller guarantees the
stability and performance of a closed loop system over the
entire parameter polytope Θ.

5. Mast vibration reducing LPV controller
design

In this section, a design case study is presented using the
modeling and controller synthesis techniques described in
the previous sections. The aim of this design process is to
find an adequate LPV controller which is able to handle
the variations in the dynamic parameters of the stacker
crane during hoisting/lowering operations. The resulting
controller must provide the stability and high performance
of the closed-loop system over the set of admissible
parameter trajectories. Since the magnitude of the lifted
load may vary only during the pick-up and deposit cycles
(while the stacker crane is at a standstill), a higher level
control system can adapt to this load magnitude variation
by the reconfiguration of the controller. Hence, in LPV
controller synthesis, only the lifted load position (lifting
height) is taken into account as a scheduling variable.
This reduction in the number of scheduling parameters
can be very useful in the case of the polytopic LPV
synthesis approach since the number of vertices grows
exponentially with the number of parameters.

The dynamic model for controller synthesis and time
domain simulations are generated based on the discussion
presented in Section 2. Here, a 20th order FE model is
used to generate the local LTI models in the vertices of the
parameter polytope, i.e., both endpoints of the lifted load
position. These models are reduced to the 4th order for
simplicity (conserving the rigid body motion capability
and first vibrational mode) and projected to the same basis
via the method described in Section 3. Finally, the LPV
model of the stacker crane is defined with the polytopic
approach.

For defining the controller performances, the control
configuration shown in Fig. 4 is used. Here, the model
matching function is chosen as

Wref =
100

s2 + 20s+ 100
. (33)

The performance weighting functions We and Wu are

We =
10

1 + 103s
, Wu =

10−6s

1 + 10−5s
. (34)
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Fig. 5. Achievement of performance objectives.

Analyzing the controller design objective (22), it can
be concluded that this objective implies the following
conditions:

|We (Wref − Ti)| ≤ γ,

|WuKSi| ≤ γ.
(35)

Hence, the norms of the inverses of weighting functions
We and Wu may be viewed as upper bounds on the
transfer functions Wref − Ti and KSi, respectively. Thus
the bandwidth of the closed-loop system may be affected
by proper selection of the parameters of performance
weighting functions. The achievement of performance
objectives for the closed-loop system can be checked by
means of Fig. 5.

The closed-loop system with the designed controller
is tested by means of simulation based analysis. In this
simulation, the position signal of a general stacker crane
moving cycle is used as reference. In the first session of
the moving cycle, the stacker crane has desired constant,
0.5m/s2 acceleration. In the second session, the desired
velocity is 3.5m/s and the deceleration value of the third
session is −0.5m/s2. The distance covered in the moving
cycle is 70m while the total cycle time is 27 seconds. The
lifted load position varies between 5m and 35m during
the time-domain simulation, as shown in Fig. 6.

The simulation results, i.e., diagrams of stacker crane
position q1 and mast deflection q1 − qnd

, are shown in
Fig. 7.
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Fig. 6. Lifted load position.

For comparison purposes, the simulation diagrams
generated by an LTI controller near the fixed (uppermost)
load position are shown in Fig. 8. This robust LTI
controller is designed with the focus on good reference
signal tracking instead of reducing mast vibration.
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Fig. 7. Time-domain simulation results: stacker crane position
q1 (a), mast deflection q1 − qnd (b).
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Fig. 8. Time-domain simulation results of the LTI controller:
stacker crane position q1 (a), mast deflection q1 −
qnd (b).

6. Conclusions

In the paper, a controller design method has been
introduced which is able to generate a gain-scheduled
controller to handle the variation in lifted load parameters
during stacker crane operation. At the same time, good
reference signal tracking and mast vibration reducing
properties are also relevant aims of controller design.
After summarizing the dynamic modeling possibilities
of single-mast stacker crane structures, a local LTI
model based polytopic LPV modeling approach has been
presented to describe the parameter dependence of the
dynamic model. Due to the relatively high-dimensional
local dynamic models, first they must be reduced
with a suitable method. During this model order
reduction, the consistency of state space representations
between parameter points is guaranteed by an additional
transformation. A gain-scheduling LPV controller design
method has also been introduced which is suitable for
positioning control of stacker cranes with reduced mast
vibrations in the presence of parameter (e.g., lifted load
position) variations. The analysis of the controlled system
has been carried out via time domain simulations. The

results show acceptable reference signal tracking and mast
vibration reducing properties.
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