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Designing variable structure control with sliding mode (VSC-SM) control schemes needs a switching function or a sliding
surface which guarantees the global stability of the closed-loop system. Despite the fact that a wide range of design ap-
proaches has been proposed for solving this mathematical problem, the number of proposed methodologies for nonlinear
systems is not very extensive, especially for discrete time nonlinear MIMO systems, and most of them require some coor-
dinate system transformation. Therefore, it is not an easy task to find a design scheme that can be applied to discrete time
nonlinear MIMO systems. The proposed methodology introduces a mathematical tool: a switching surface equation for a
class of MIMO nonlinear systems through an explicit equation without any coordinate transformation. This equation makes
use of an implicit linearizing process via the Taylor expansion that allows the use of linear procedures for the design of
switching surfaces and the forward Euler method to obtain a discrete time dynamics representation. An illustrative example
is included to show the advantages of the proposed design methodology.
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1. Introduction

The procedure for designing VSC-SM consists of two
steps. Firstly, designing a switching function or a sliding
surface that guarantees the global stability of the closed
loop system, and secondly, specifying a control law that
assures the existence of a stable sliding mode. The first
step is related to the closed-loop sliding phase or steady
state controlled system dynamics, and the second one to
the reaching phase or transient state system dynamics.
Therefore, the performance of the steady state of the
controlled system depends on the switching function
parameters. The earliest works on VSC-SM covered this
problem, mainly for continuous linear systems (Utkin,
1977; Utkin and Yang, 1978; Hung et al., 1993; DeCarlo
et al., 1988; Gao and Hung, 1993). In the mid-1980s, some
detailed studies on discrete time variable structure con-
trol (DVSC) appeared and, consequently, an increasing
number of research works engaged in analyzing and
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specifying discrete time sliding surfaces were carried out
(Furuta, 1990; Gao et al., 1995).

For sliding surface design in the context of linear
systems, the research lines are based on classical linear
system design methods such as arbitrary eigenvalues
assignment (Ackermann and Utkin, 1994; Utkin et al.,
1999; Perruquetti and Barbot, 2002; Draženović et al.,
2013) or optimal control approaches (Tapia et al., 2014;
Kim et al., 2000; Choi, 2003; Edwards and Spurgeon,
2003; Lin et al., 2013). On the other hand, for nonlinear
systems, a reduced number of results have been reported.
Nevertheless, the problem has been analyzed since the
mid-1980s (DeCarlo et al., 1988; Sira-Ramı́rez, 1986;
1991; Spurgeon and Davies, 1993; Su et al., 1996;
Ghaffari and Yazdanpanah, 2008; Zhang et al., 2010; Rui
and Dong-wei, 2011; Nadzinski et al., 2012).

The most general methodology consists in obtaining
a nonlinear canonical dynamics representation (reduced
canonical form, normal canonical form, Brunovsky’s
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canonical form, etc.), and then the switching surface
is calculated in the new state space coordinates.
Representations in normal and Brunovsky’s canonical
forms are most commonly used (Sira-Ramı́rez, 1991), but
cannot be applied to nonminimum phase plants.

On the other hand, if a coordinate transformation
is used, then the switching surface specification is made
in the new coordinate system, and therefore an inverse
transformation is needed in order to obtain knowledge
about the dynamics in the original one. Furthermore,
for high order plants, the complexity of these approaches
increases considerably and finding the solution becomes
a difficult task. In addition, existing research works
are based on the ideal sliding mode (SM) dynamics,
i.e., they do not take into consideration the nonideal
behaviour of the SM inherent to DVSC (Gao et al., 1995;
Sira-Ramı́rez, 1991; Milosavljević, 1985; Potts and Yu,
1991; Furuta and Pan, 1995). These nonideal dynamics,
known as the quasi-sliding or pseudo-sliding mode,
consist of undesirable oscillatory vector state trajectories
around the switching surface. These drawbacks (the
lack of design methodologies, the complexity of the few
existent ones and the need for considering quasi-sliding
mode dynamics) motivate our research work, whose
main objective is to find an easy way for specifying
a stable sliding manifold for discrete time nonlinear
multi-input-multi-ouput (MIMO) systems considering the
nonideal SM dynamics in the design procedure.

The proposed design methodology is based on
a new versatile switching surface equation applied to
obtaining an MIMO discrete time nonlinear system with
the following main features: (i) the switching surface
equation has the same structure regardless of the system
nonlinearities dynamics, (ii) the complexity of applying
the methodology does not vary with the order of the plant,
(iii) some parameters of the proposed equation allow
obtaining different steady state performances according
to various design criteria such as optimal control
methods or eigenvalue assignment approaches, (iv) the
proposed methodology does not need any coordinate
transformation, and (v) a design parameter is considered
for the adjustment of the nonideal sliding mode system
dynamics.

All these features make the methodology a useful
tool. Indeed, the designer can vary some parameters
of the equation to obtain several switching surfaces and,
consequently, a comparison of the resultant sliding mode
dynamics with other techniques can be made.

Finally, it is important to stress that, for achieving
the switching surface scheme, the forward Euler time
stepping method (or the explicit Euler method) is used to
obtain a discrete time difference equation approximation
and the Taylor expansion is applied to linearize the
system. In the work is introduced of Draženović et al.
(2013), a decoupled solution for designing switching

surfaces applied to linear continuous and discrete time
systems without any transformation using a state feedback
gain matrix which can be chosen using eigenvalues or
optimal methodologies. The main advantage of the
proposed methodology, compared with this approach, is
that it includes a design parameter which allows the
adjustment of the sliding mode dynamics of the controlled
system.

An overview of the general sliding hyperplane
designing problem related to MIMO nonlinear systems
is presented in Section 2. The remainder of the paper
is organized as follows: the proposed design method is
developed in Section 3, an illustrative design example
is detailed in Section 4, and conclusions and future
proposals are presented in Section 5.

Throughout this paper, the following notation is
used: f : Rm → R

n stands for a function that maps from
the m-dimensional vector space Rm to the n-dimensional
vector space R

n; ‖·‖ denotes the magnitude of a scalar or
the standard Euclidean norm of a vector; |·| indicates the
absolute value of a scalar; sign(·) stands for the sign of
a real scalar and det (·) for the determinant of a square
matrix; Im means the m × m identity matrix; N (·)
represents the null space of a matrix; R (·) denotes the
range of a matrix and Λ (·) means the set of eigenvalues
of a square matrix. Finally, P (·) denotes a generic system
or process.

2. Preliminaries

VSC and DVSC are control schemes where the input laws
u : Rm → R

n are generally noncontinuous functions that
depend on the value of some switching function s : Rn →
R

m such that the state of the systems, denoted as x ∈
X ⊂ R

n, is steered from some initial state x (0) ∈ X to
a subspace region S = {x ∈ X : s (x) = 0}. Therefore,
the system state remains indefinitely on S, i.e., the state
slides on the surface. Consequently, S is known as a
switching surface and, once the state arrives and lies on
the switching surface, the system is said to be in SM.

A particular feature of VSC (see Fig. 1) is that these
controllers are built with two main parts: the first one
is a multivariable function known as a switching surface
(the box labelled as s (x (k)) in the figure) and a bank
of control law blocks or a big multivariable function that
makes use of the output of the switching surface in order
to obtain the desired control action u (k) to the plant. As
previously mentioned, the aim of this work is to give a new
methodology for the design switching surfaces applied to
MIMO nonlinear systems. The general nonlinear sliding
surface problem can be stated as follows.

Problem 1. Consider a nonlinear discrete time system
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whose dynamics are defined as

x (k + 1) = f (x (k) ,u (k) , k) , (1)

y (k) = h (x (k) ,u (k) , k) ,

where x ∈ X ⊂ R
n, u ∈ U ⊂ R

m and y ∈ U ⊂ R
p

are the state, input and output vectors, respectively, and
f : X×U → X and h : X×U → Y are supposed to
be analytical functions. Then, given a control law u (k)
such that a sliding mode on the surface S is ensured:

S = {x ∈ X | s (x (k)) = 0} , (2)

the switching function s : X → R
m must be specified to

make the closed-loop system asymptotically stable.

Fig. 1. General DVSC scheme.

It has been mentioned that the number of research
works related to the design of switching surfaces applied
to nonlinear systems is considerably smaller than for
linear ones. One of the earliest works related to nonlinear
sliding surface design was presented by Sira-Ramı́rez
(1986), who proposed to obtain a linearized equivalent
representation via state feedback, where a linear sliding
surface is designed in Brunovsky’s canonical form.
Other approaches make use of linear approximations
as in the work of Camacho and Smith (2000), where
nonlinear systems are approximately modelled via first
order plus dead time (FOPDT). In another work,
Sira-Ramı́rez (1991) proposed the use of the normal
canonical representation for the design of DVSC for
nonlinear systems, but without any indication or guideline
about how the switching sliding surfaces are chosen.
DeCarlo et al. (1988) presented a method for designing
SM surfaces using regular canonical representations
(Johansson and Nunes, 1998), and Spurgeon and Davies
(1993) made use of a noncanonical transformation. Su et
al. (1996; 1994) set forth a Lyapunov approach for sliding
surface design. More recently, Ghaffari and Yazdanpanah
(2008) proposed a method for computing nonlinear stable
sliding mode surfaces, and Rui and Dong-wei (2011)

introduced an algorithm for designing optimal sliding
surface for nonlinear discrete time systems using the
nonlinear two point boundary problem (TPBV) approach,
while Bartoszewicz and Leśniewski (2014) made use of
an optimal approach for designing a sliding hyperplane.
Finally, some approaches intended to apply DVSC with an
SM to discrete time nonlinear systems based on T–S fuzzy
models use linear methods such as LMI for the design
of switching surfaces (Zhang et al., 2010; Nadzinski
et al., 2012).

Before presenting the design of sliding surfaces
applied to nonlinear systems, let us find the ideal SM
dynamics. Consider a nonlinear discrete time system
whose dynamics are defined in (1). Then the equivalent
control law uequ (k) can be found so that

s (k + 1) = s (k) = 0, (3)

where

s (k + 1) = s (f (x (k) ,uequ (k) , k)) . (4)

This equation yields the ideal sliding mode described as

x (k + 1) = f (x (k) ,uequ (k) , k) , k ∈ Z
+, (5)

s (x (k)) = 0, ∀k.

For a linear switching surface s (k) = Cx (k) and
from (1), we obtain

Cf (x (k) ,uequ (k) , k) = 0. (6)

Therefore

uequ (k) = f−1 (x (k) ,u (k) , k) , (7)

which implies that uequ can be unequivocally found if f
is single-valued or regular.

In the case of affine systems, i.e., those whose
dynamics exhibit a linear behaviour in relation to the
inputs and a nonlinear one with respect to the states, (1)
can be written as

x (k + 1) = f (x (k) , k) + Γu (k) , (8)

where Γ : X → X×U. Thus, the ideal sliding surface
dynamic are defined as

s (k) = Cf (x (k) , k) +CΓu (k) , (9)

and the equivalent control law is given by

uequ (k) = − (CΓ)
−1

Cf (x (k) , k) . (10)

Therefore, the closed loop ideal SM is described as

x (k + 1) =
[
In − Γ (CΓ)−1C

]
f (x (k) , k) . (11)
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In general, the methods for designing nonlinear
surfaces are based on obtaining a suitable canonical
representation in order to find an easy mathematical
model that could help in the design process (Hung et
al., 1993; DeCarlo et al., 1988; Gao and Hung, 1993;
Sira-Ramı́rez 1986; 1991; Spurgeon and Davies, 1993;
Su et al., 1994). The following section presents a new
scheme for designing sliding switching surfaces applied to
MIMO discrete time nonlinear systems, which simplifies
the design tasks and gives a high level of accuracy for an
arbitrary location of eigenvalues or optimal SM dynamics,
depending on the desirable design criteria.

3. Proposed sliding hyperplane design:
The main results

A novel sliding surface equation is introduced in the next
theorem.

Theorem 1. Suppose that we are given the following:

1. a MIMO nonlinear continuous time system P (·) with
dynamics described as

ẋ (t) = f (x (t) ,u (t)) , (12)

where x ∈ X ⊂ R
n is the state vector and f :

R
n+m → R

n defined as

f(x) =
[
f1 (x, u) f2 (x, u) · · · fn (x, u)

]T
,

(13)
where every fi : R

n+m → R is a smooth nonlinear
function;

2. a state feedback gain matrix K ∈ R
m×n such that

the following system dynamics are asymptotically
stable:

x (k + 1) =
[
Φ̂− Γ̂K

]
x (k) , (14)

where Φ̂ and Γ̂ are defined as

Φ̂ = In + TJA, (15)

Γ̂ = TJB,

In being the n-th order identity matrix, T sample
time and JA and JB the Jacobian matrix of f(x) with
respect to x (t) and u (t), respectively, such that

JA(x) =
∂f

∂x

∣
∣
∣∣
x=xe,u=ue

,

JB(x) =
∂f

∂u

∣
∣∣
∣
x=xe,u=ue

,

where xe ∈ X is an equilibrium state.

If P (·) is controlled via DVSC, then the switching
function s (k) = Cx (k) makes the discrete time ideal
sliding mode of the controlled system asymptotically sta-
ble around xe ∈ X if C is estimated as

C = EK [In +TJA (x)]
−1

, (16)

where E ∈ R
m×m is an arbitrary nonsingular design ma-

trix.

Proof. Let us obtain a linearized system through the
first-order term of the Taylor expansion of f (x (t)) around
an equilibrium point xe (see Section A.1 in Appendix),
i.e., the system dynamics given in (12) are approximated
around an equilibrium state xe as follows:

ẋ (t) ≈ Ax (t) +Bu (t) , (17)

where

A = JA(x) =
∂f

∂x

∣∣
∣
∣
x=xe,u=ue

, (18)

B = JB(x) =
∂f

∂u

∣∣
∣
∣
x=xe,u=ue

.

Then, for time discretization, let us use the Euler method
(see Section A.2 in Appendix). Hence, a discrete time
system dynamics representation of (17) is equal to

x (k + 1) = [In + TA]x (k) + TBu (k)

= Φ̂x (k) + Γ̂u (k) . (19)

Owing to the condition stated in (14) for the next
Lyapunov function, we have

V (k) = xT (k)Px (k) , (20)

and the following linear Lyapunov equation holds:

[
Φ̂− Γ̂K

]T
P
[
Φ̂− Γ̂K

]−P = −Q, (21)

P ∈ R
n×n being a symmetric positive definite matrix and

Q ∈ R
n×n a symmetric positive semi-definite matrix.

On the other hand, from (11), and on account of the
switching surface s (k) = Cx (k), the ideal SM of the
system given in (19) is as follows:

xSM (k + 1) =
[
Φ̂− Γ̂

(
CΓ̂

)−1
CΦ̂

]
x
(
k
)

(22)

= Φ̂equx
(
k
)
.

Taking account of the SM dynamics specified in (22) and
applying the Lyapunov theorem to SM stability analysis,
the following condition must hold:

[
Φ̂− Γ̂(CΓ̂)−1CΦ̂

]T
P
[
Φ̂− Γ̂(CΓ̂)−1CΦ̂

]

−P = −Q. (23)
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Since C = EKΦ̂
−1

, we get

[
Φ̂− Γ̂(CΓ̂)−1EK

]T
P
[
Φ̂− Γ̂(CΓ̂)−1EK

]

−P = −Q. (24)

Then, defining E = CΓ̂ without any loss of generality
and substituting it into (24), we obtain

[
Φ̂− Γ̂K

]T
P
[
Φ̂− Γ̂K

]−P = −Q, (25)

which is the same equation as the one given in (21), and
this completes the proof. �

Theorem 1 shows that the sliding surface s (k) =
Cx (k) , where C ∈ R

m×n is defined in (16), guarantees
the asymptotic stability of any MIMO nonlinear system
represented as in (12) and where a state feedback gain
matrix K is needed. Hence, the problem of designing
the sliding surface s (k) = Cx (k) is reduced to the
specification of the matrix C so that the characteristic
polynomial of Φ̂CL = Φ̂ − Γ̂K is strictly Schur
(Åström and Wittenmark, 1997). Additionally, the gain
matrix K can be either estimated via arbitrary eigenvalues
assignment approaches or with optimal methods such
as the linear quadratic regulator (LQR) or the linear
quadratic Gaussian (LQG). This can be considered
an advantage of the proposed methodology because
designers can obtain several Ks, and then the evaluation
of SM performance can obtained for every K. For the
pole placement methodology, it is worth mentioning that
m eigenvalues of Φ̂CL must be set to zero, because the
equivalent SM always has m poles at the origin (Spurgeon
and Pugh, 1991). The other n − m eigenvalues must be
set inside the unit circle.

Theorem 2. If the gain matrix K ∈ R
m×n stabilizes the

system via eigenvalue shifting such that the roots of the
characteristic polynomial of the matrix

XCL (λ) = det
[
λIn − Φ̂+ Γ̂K

]
= 0 (26)

are located at the arbitrary eigenvalues

λd =
{
λ1, λ2, · · · , λn−m, 0, 0, · · · , 0

︸ ︷︷ ︸
m

}
, (27)

where |λi| < 1, i = 1, 2, . . . , n − m, then the surface
definition s (k) = Cx (k) makes the ideal sliding mode
of the controlled system asymptotically stable with eigen-
values located exactly at λd provided that C is obtained
using (16).

Proof. From the theorem statement, the feedback gain
matrix K stabilizes the system, where the closed-loop
system dynamics are given by

xCL (k + 1) =
[
Φ̂− Γ̂K

]
x (k) .

If the system is transformed to the canonical form via
a similar transformation x̄ (k) = Mx (k), then the
dynamics of the closed-loop canonical system are given
by

x̄CL (k + 1) =
[
Φ̄− Γ̄K̄

]
x̄ (k) , (28)

where Φ̄ = MΦ̂M
−1

, Γ̄ = MΓ̂ and K̄ = KM−1 and
M is given as

M =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

gm1

gm1Φ̂
...

gm1Φ̂
m1−1

gm1+m2

gm1+m2Φ̂
...

gm1+m2Φ̂
m2−1

...
gm1+···+mpΦ̂

mp−1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (29)

with gi is being the i-th row of the rearranged
controllability matrix W̄c obtained from Wc as follows:

W̄c

(
Φ̄, Γ̄

)
=
[
Γ̄1 Φ̄Γ̄1 · · · Φ̄m

1−1

1 Γ̄; (30)

Γ̄2 Φ̄Γ̄2 Φ̄
m2−1

2 Γ̄

· · ·
Γ̄mi Φ̄Γ̄mi · · · Φ̄

mp−1
p Γ̄

]
,

where
∑p

i=1 mi = n. It is known that a similar
transformation is invariant to the eigenvalue location, and
therefore the eigenvalues of

[
Φ̄− Γ̄K̄

]
are λd. As for the

ideal SM of the system in the canonical form, we have

x̄SM (k + 1) =
[
Φ̄− Γ̄

(
C̄Γ̄

)−1
C̄Φ̄

]
x̂ (k) . (31)

Comparing (28) and (22), it is clear that if the
following condition is fulfilled:

K̄ =
(
C̄Γ̄

)−1
C̄Φ̄, (32)

then the eigenvalues of the ideal SM matrix are located at
λd. Also, let us consider the following representation for
C̄ and Γ̄:

C̄ =
[
c̄1 c̄2 · · · c̄n

]
, (33)

Γ̄ =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

0m1−1×m

F1

0m2−1×1

F2

...
0
Fm

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where c̄i ∈ R
m is the i-th column of C ∈ R

m. Defining
the matrix F ∈ R

m×m as

F =

⎡

⎢
⎢
⎢
⎣

F1

F2

...
Fm

⎤

⎥
⎥
⎥
⎦

(34)

and taking account of the fact that

Fi =
[
0 0 · · · 1 ∗ · · · ∗ ]

we conclude that F is an upper triangular matrix in which
all the elements on the main diagonal are ones. Therefore,
det (F) = 1. In addition, it can be shown that

C̄Γ̄F
−1

= L (35)

= [cm1 cm1+m2 · · · cn] . (36)

Thus, if L is arbitrarily specified such that det (L) =
α, α 	= 0, since det

(
F−1

)
= 1, we get det

(
C̄Γ̄

)
= α 	=

0. Defining E = FLF = C̄Γ̄ and replacing C̄Γ̄ into (32),
we obtain

K̄ = E−1C̄Φ̄. (37)

Therefore
C̄ = EK̄Φ̄

−1
. (38)

Finally, from C = C̄M, K̄ = KM−1 and
M−1Φ̄−1M = Φ̂−1, it follows that

C = EKΦ̂
−1

. (39)

�

Corollary 1. Under the assumptions of Theorem 2, we
have E = CΓ̂ when K fulfills (26) and (27).

From Theorem 2, the spectrum of the ideal SM
dynamics, denoted as Λ(Φ̂equ), have m zero eigenvalues
and the same n − m eigenvalues chosen for the stable
dynamics of Φ̂CL, i.e., Λ(Φ̂CL) = Λ(Φ̂equ), where
Φ̂equ is given in (22). As shown in Theorem 2, the sliding
surface definition (16) presents a simple way to configure
the SM dynamics by means of an arbitrary eigenvalues
assignment and it is easy to check that the eigenvalues of
the resultant ideal SM system matrix are located exactly
at the desired eigenvalues. What is more, the theorem
can be proven easier, with the hint chosen intended to
prove that the ideal sliding mode is completely specified
by K. Moreover, if the arbitrary matrix E is chosen such
that E = CΓ̂ 	= 0, then the SM invariance property is
guaranteed (Dorling and Zinober, 1986). Since CΓ̂ 	= 0,
we have R(Γ) ∩ N (C) = ∅, which implies that E does
not affect the ideal SM dynamics and, therefore, they are
exclusively specified by the gain matrix K.

However, Milosavljević (1985) proved that for
discrete time systems the ideal SM cannot be achieved

and a quasi-or pseudo-sliding mode appears. In the
quasi-sliding mode, the state vector oscillates in a region
around s (k) = 0 and control laws are designed
for minimizing the amplitude of oscillations. Hence,
calculating the nonideal SM dynamics yields

s (k + 1) = E [Kx (k) + u (k)] . (40)

Then it is obvious that s (k + 1) depends on E. Indeed,
every si ∈ s (k) can be adjusted through a linear
combination of the components of the vector u (k).
Consequently, E should be considered when the control
laws are specified. It is important to note that if the state
feedback gain matrix K does not fulfill the conditions
given in (26) and (27), then E 	= C−1Γ̂. However, it
can be shown that a desired CΓ = D can be achieved if
E is defined as follows:

E = D(KΦ̂
−1

Γ̂)−1. (41)

In addition, some relevant features that are very
helpful during the design of control laws are given in the
following lemma.

Lemma 1. Consider P (x,u), a linearized and dis-
cretized MIMO system whose dynamics are described by
(19). If P (x,u) is controlled using a DVSC and the
switching surface is defined as in (16) such that the re-
strictions (26) and (27) are fulfilled, then the ideal SM
equivalent control uequ (k) is equal to

uequ (k) = −Kx (k) , (42)

and the ideal SM dynamics are

s (k + 1) = s (k) = 0, (43)

xequ (k + 1) = Φequx (k) , (44)

where
Φequ = Φ− ΓK. (45)

Proof. Note that the proof is immediate if we set
C = EKΦ̂−1 in (10) and (11). �

This lemma introduces two important features: (i)
the equivalent control law is similar to the classical state
feedback control law for pole placement, and (ii) the
equivalent system dynamics do not depend on e and are
exactly the same as for the system controlled using and
state space feedback scheme.

Considering Theorem 1, the proposed design method
can be described as follows:

1. Obtain the matrices Φ̂ and Γ̂ using (15) and (18). The
sampling time T can be obtained from the system
step response using the Åström criterion (Åström
and Wittenmark, 1997), which establishes that the
sampled time T can be calculated from the system
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step response so that, during the rise time tr, the
number of samples Nr must be between 4 and 10,
i.e.,

Nr =
tr
T

= 4 ∼ 10. (46)

2. Find the gain matrix K so that Φ̂CL = Φ̂ − Γ̂K is
strictly Schur.

3. Find any desired CΓ according to the desired
performance of the pseudo-sliding system dynamics.
If K is found using eigenvalue placement, then E =
CΓ, otherwise use the equation given in (41). If no
specific CΓ definition is given, choose an arbitrary
matrix E.

4. Compute C using (16).

5. Verify that the characteristic polynomial of Φ̂equ is
strictly Schur.

Once the switching surface is completely defined,
a control law u (k) which fulfills some reaching law
restriction such as the ones given by Gao et al. (1995),
Sira-Ramı́rez (1991), Bartoszewicz (1998) or Furuta and
Pan (2002) is needed. In addition, the design procedure
explained so far considers plants without uncertainties
about their dynamics. It is known (Gao et al., 1995) that
perturbed systems controlled via DVSC whose dynamics
are given as follows:

x (k + 1) = (Φ̃+ΔΦ̃)x (k)

+ Γ̂u (k) + d (k) (47)

are invariant with respect to system deviations ΔΦ̃ and
external perturbations d (k) when the following matching
conditions hold:

ΔΦ̃ = Γ̂Φ̃, Φ̃ ∈Rm×n,

d (k) = Γ̂d̃ (k) , d̃ :R → R
m, (48)

and det (E) 	= 0.
However, the control law u (k) must be designed

such that some reaching law must be fulfilled considering
these uncertainties, mostly when the matching conditions
are not achieved (Furuta, 1990; Gao et al., 1995; Kim
et al., 2000; Sira-Ramı́rez, 1991; Yu et al., 2000; Yadav
and Singh, 2012; Mondal et al., 2012; Qu et al., 2014).
This part of the design of DVSC controllers is not
directly carried out during switching the surface design
phase. Additional design problems, such as unobservable
states, can be minimized using state vector estimation
or predictors (see, e.g., Pai, 2008; Wang et al., 2011).
In addition, it is known that for discrete time systems
(Soroush and Kravaris, 1992) delays only modify the
relative degree of the state space dynamics. Thus, time
delay compensation can be made using some additional
scheme such as the one proposed by Sira-Ramı́rez (1991).

4. Example

An industrial process used as a MIMO example is applied.
It includes level control of a four-tank laboratory system
(Gatzke et al., 2000). This nonlinear system consists of
four-tanks T1, T2 T3 and T4 with the cross-sectional area
Ai, i = 1, . . . , 4, respectively, and where two pumps
(system inputs) are used for transferring water from a
bottom basin into four upper tanks (see Fig. 2). The
output flow rate for each pump u1 (t) and u2 (t) can
be manipulated to control the two level outputs h1 (t)
and h2 (t), respectively. The system exhibits interacting
multivariable dynamics because it was designed such that
u1 (t) and u2 (t) affect h1 (t) and h2 (t). The continuous
time system model dynamics are as follows:

ḣ1 (t)=− 1

A1

[
a1
√
2gh1 (t)− a3

√
2gh3 (t)

]
(49)

+
1

A1
γ1k1u1 (t) ,

ḣ2 (t)=− 1

A2

[
a2
√
2gh2 (t)− a4

√
2gh4 (t)

]

+
1

A2
γ2k2u2 (t) ,

ḣ3 (t)=− 1

A3

[
a3
√
2gh3 (t)− (1− γ2) k2u2 (t)

]
,

ḣ4 (t)=− 1

A4

[
a4
√
2gh4 (t)− (1− γ1) k1u1 (t)

]
,

y (t) =
[
1 1 0 0

]
h (t) ,

where d1 (t) and d2 (t) are the deviation and
perturbation signals, g � 980 cm/s2 is the gravitational
acceleration, ai and Ai correspond to the drain and the
tank area of the i-th tank, respectively, and where γ1 and
γ2 denote the ratio flow in Tank 1 and Tank 4 and the
ratio flow in Tank 2 to Tank 3, respectively, such that
γ1 + γ2 < 1.

The process parameters considered here are Ai =
A = 730 cm2 , a1 = a3 = a2 = a4 = 2.3 cm2,
k1 = 5.51, k2 = 6.58 cm3/s, u0

i = 60%, γ1 =
0.333 and γ2 = 0.307. It is easy to show that,
for the inputs u1 (k) = u2 (k) = 60%, the initial

state x (0) =
[
14.192 11.243 7.212 4.680

]T
is a

stationary one. Following the proposed methodology, the
first step consists in finding the Jacobian matrices JA, JB .
Hence

JA =

⎡

⎢
⎢
⎣

− 1
T1

0 A3

A1T3
0

0 − 1
T2

0 A4

A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4

⎤

⎥
⎥
⎦ , (50)
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Fig. 2. Experimental four tank system scheme.

JB =

⎡

⎢
⎢⎢
⎣

γ1k1

A1
0

0 γ2k2

A3

0 (1−γ2)k2

A3
(1−γ1)k1

A4
0

⎤

⎥
⎥⎥
⎦
, (51)

where

Ti =
Ai

ai

√
2hi (0)

g
.

The second step is to find Φ̂. Defining the state vector

x (t) =
[
h1 (t) h2 (t) h3 (t) h4 (t)

]T

and a sample time T = 0.5 s, we have

x (k + 1) = Φ̂x (k) + Γ̂u (k) + n (k) , (52)

Φ̂ =

⎡

⎢
⎢
⎣

0.991 0 0.013 0
0 0.990 0 0.016
0 0 0.987 0
0 0 0 0.984

⎤

⎥
⎥
⎦ , (53)

Γ̂ =

⎡

⎢⎢
⎣

0.001 0
0 0.001
0 0.003

0.0025 0

⎤

⎥⎥
⎦ , (54)

n (k) =

⎡

⎢
⎢
⎣

0 0
0 0
0.2 0
0 0.3

⎤

⎥
⎥
⎦d (k) . (55)

Since xr = xe 	= 0, the system dynamics must be
specified in relation to the error vector e (k) defined as
follows:

e (k) = xr − x (k) , xr = xe. (56)

First we need to select a state vector feedback gain matrix
K such that the system given in (52) is asymptotically
stable. Choosing an optimal procedure (MATLAB
function dlqr), the following gain matrix K is obtained:

K =

[
30.967 39.236 −14.700 82.493
37.259 23.677 85.482 −15.328

]
,

(57)
where P and Q are arbitrarily chosen as In and 10−5In,
respectively. Then, the matrix E must be specified.

Choosing the following arbitrary matrix E:

E = E1 =

[
1 0.01
0 1

]
, (58)

the switching surface is computed by means of the
proposed swtiching surface equation given in (16):

C =

[
31.6310 39.8851 −14.4379 83.0338
37.6053 23.9244 86.1099 −15.9645

]
.

(59)
Using (22) for calculating the system matrix Φ̂e for the
ideal SM, we have

Φ̂e =

⎡

⎢
⎢
⎣

0.8364 −0.1970 0.0926 −0.4184
−0.1686 0.8837 −0.3921 0.0911
−0.3746 −0.2317 0.1001 0.1848
−0.3028 −0.3897 0.1705 0.1477

⎤

⎥
⎥
⎦ ,

(60)
and the ideal SM spectrum is

Λ
(
Φ̂SM

)
= {0.9889, 0.9791, 0, 0}.

Therefore, the ideal SM is asymptotically stable.
In order to illustrate the closed-loop stability, numerical
simulations are performed as explained next.

Simulation. The numerical values are obtained using the
computing environment MATLAB R©, and the controller
was implemented using a control law obtained via the
reaching law approach proposed by Gao et al. (1995) such
that

u (k) = uequ (k) (61)

−E−1 [s (k) (μT − 1) + εT sign (s (k))] ,

where the arbitrary designing parameters ε and μ must
satisfy the following restriction:

Δ =
εT

1− μT
, (62)

where 2Δ corresponds to the width of the quasi sliding
mode band (QSMB). For a QSMB <1 and μ = 1, ε
becomes 0.5.

Tracking problem simulation. To illustrate how the
system follows the reference value or set-point xr (k),
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let us consider a scenario where xr (k) changes from
xr = xe to xr = xe (1 + 20%). Thus, the error vector
value quickly raises up as shown in Fig. 3. Nevertheless,
DVSC can drive the error vector to zero, which proves
the asymptotically stability of the switching surface (see
Figs. 5 and 4). Hence, the state vector signal values are
driven from x (0) to the new reference, i.e., x (k) follows
xr (k) (see Fig. 5), and the surface values s (k), which are
shown in Fig. 4, decay in a short time.

Fig. 3. Tracking error e (k).

Fig. 4. Evolution of the sliding surface s (k).

Robustness analysis. In order to illustrate the robustness
of the SM dynamics for a switching surface designed
using the proposed methodology, two scenarios are
presented. The first one considers an external disturbance
which increases the level of Tank 3 by 0.5 cm for 5 s. In
Fig. 6, it can be seen that the state vector value is perturbed

Fig. 5. Evolution of the state vector x (k) after a change in the
reference value xr (k).

Fig. 6. Stable closed-loop system dynamics perturbed by the ex-
ternal disturbance d1 (k).

at t = 10 s but recovers its stable stationary state xe about
200 s later. The switching surface s (k), the vector error
e (k) and the control law u (k) dynamics are shown in
Figs. 7–9, respectively.

The second robustness test consists in adding
Gaussian noise η (k) to the input u1 (k) , where the mean
and variance of η (k) are E (η (k)) = 10 and σ (η (k)) =
10, respectively (see Fig. 10). Despite this perturbation,
the controller stabilizes the system around the stationary
point x (0), as can be seen in Fig. 11.

Nonideal sliding mode considerations. To explain how
the design parameter E affects the nonideal sliding mode,
let us chose another value for E such that

E = E2 =

[
4 −3

−3 4

]
. (63)

For the state vector feedback gain matrix K given in (57),
the following switching function is obtained with (16):

C2 =

[
12.204 86.811 −319.526 380.667
56.656 −23.240 390.337 −313.438

]
.

(64)
As expected, the system matrix Φ̂SM,2 for the ideal SM
for C = C2 coincides with the one given in (60). For the
simulations, the control law given in (61) is chosen, where
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Fig. 7. Surface dynamics for the closed loop system simulated
with the external disturbance d1 (k).

Fig. 8. Error dynamics e (k) for the pulse disturbance d1 (k).

u (k) is disturbed by the signal noise η (k) previously
defined. The control law is designed to guarantee that
s (k) = 0, i.e., e (k) = 0 and, as can be seen in Fig. 12, it
is achieved for both specifications matrix of E. However,
since E1 	= E2, the control law effort differs considerably
in each case, as can be seen in Fig. 13. Hence, it is clear
that E can be used for improving the controlled system
performance during the sliding mode phase.

This numerical simulation shows that a switching
surface specified as in (16) yields asymptotically stable
nonideal sliding mode dynamics for nonlinear discrete
time MIMO systems whose dynamics are given in the
affine variable state representation. In addition, it is
illustrated how the definition of the parameter E affects
the nonideal controlled system behaviour.

5. Conclusion and future works

This research work proposed a simple scheme for
designing switching surfaces applied to a discrete
time affine nonlinear MIMO system. The presented
methodology makes use of linearized systems dynamics.
We integrated the linearizing procedure with the surface
scheme in a unique equation which leads to a novel and
powerful design approach. Due to using the well-known
control methodologies applied to linear systems, such as
pole placement or LQR, the researcher can apply all of

Fig. 9. Control law u(k) for perturbed closed loop systems.

Fig. 10. Nominal control law u1 (k) and the perturbed control
law η (k) + u1 (k).

these different design criteria to a nonlinear DVSC control
problem.

The absence of any coordinate transformation
eliminates the hard task of obtaining those, which in
turn reduces the design effort. In addition, the proposed
method is the only one that allows designers to adjust
both the reaching and nonideal sliding modes through
the matrix E for nonlinear MIMO systems. Moreover,
future research works that analyze the pseudo-sliding
dynamics for a controlled system with the proposed
switching surface scheme can be conducted in order to
obtain new reaching law conditions or improved control
laws. For all these reasons, this research work can be
considered a useful tool for the design of sliding surfaces
for controlling nonlinear MIMO systems via DVSC. The
design rules presented for the design of DVSC according
to the proposed methodology constitute an easy brief
guideline for designers.

On the other hand, the proposed methodology
makes use of the Jacobian or Taylor linearizing criteria.
Since other optimal linearization approaches applied to
nonlinear dynamical systems have been proposed (see
Ababneh et al., 2011), these linearization methods can be
used instead of the Jacobian criterion to verify if some
performance features of the controlled system dynamics
are improved.
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Fig. 11. State vector dynamics x (k) for the disturbance d1 (k).

Fig. 12. Comparisons between the tracking error for E = E1

and E = E2.
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discontinuity surfaces for variable structure systems: A
Lyapunov approach, Automatica 32(6): 925–928.

Tapia, A., Márquez, R., Bernal, M. and Cortez, J. (2014). Sliding
subspace design based on linear matrix inequalities, Kyber-
netika 50(3): 436–449.

Utkin, V. (1977). Variable structure systems with sliding modes,
IEEE Transactions on Automatic Control 22(2): 212–222.

Utkin, V., Guldner, J. and Shi, J. (1999). Sliding Mode Control in
Electro-mechanical Systems, CRC Press, Boca Raton, FL.

Utkin, V. and Yang, K. (1978). Methods for construction
of discontinuity planes in multidimensional variable
structure systems, Automation and Remote Control
39(6): 1466–1470.

Wang, Y., Xia, Z., Jiang, Z. and Xie, G. (2011). A quasi-sliding
mode variable structure control algorithm for discrete-time
and time-delay systems, Chinese Control and Decision
Conference, Mianyang, China, pp. 107–110.

Yadav, N. K. and Singh, R. (2012). Robust discrete-time
nonlinear sliding mode controller with plant uncertainties,
International Journal of Engineering, Science and Tech-
nology 4(1): 38–45.

Yu, S., Yu, X. and Qian, W. (2000). Time delayed discrete
variable structure control with quasi-sliding modes, in X.
Yu and J.-X. Xu (Eds.), Advances in Variable Structure
Systems: Analysis, Integration and Applications, World
Scientific, Singapore, pp. 84–92.

Zhang, X., Wang, P., Yan, M. and Ju, Y. (2010). Discrete-time
sliding mode control of nonlinear time-delay systems
based on T–S fuzzy model, International Conference on
Intelligent Control and Information Processing (ICICIP),
Dalian, China, pp. 304–309.



A novel method for the design of switching surfaces for discretized MIMO nonlinear systems 17
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Appendix

A1. First order Taylor expansion term
linearization method

Given f : R → R such that f (x) is infinitely many times
differentiable at some complex or real point xe, f (·) can
be approximated around xe through the following Taylor
expansion:

f (x) =

∞∑

i=0

f (i) (xe)

i!
(x− xe)

i
, (A1)

where f (i) denotes the i-th derivative of f . For the first
term of (A1), we have

f (x) ≈ f (xe) + f ′ (xe) (x− xe) . (A2)

For a general dynamic system

ẋ (t) = f (x) , (A3)

assume that for x = xe we have f (xe) = 0. For the case
of xe = 0, we have

ẋ (t) ≈ f ′ (0) (x (t)− xe) . (A4)

For the general multivariable case f : Rn → R
n, i.e., for

f (·) defined as

f(x) =

⎡

⎢
⎢
⎢
⎣

f1(x)
f2(x)

...
f2(x)

⎤

⎥
⎥
⎥
⎦
, (A5)

where x (t) =
[
x1 (t) x1 (t) · · · xn (t)

]
, we have

ẋ (t) ≈ Df (xe) (x (t)− xe) (A6)

where Df (xe) is the Jacobian matrix defined as

Df(x) = J =

⎡

⎢
⎢
⎢
⎢
⎣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

⎤

⎥
⎥
⎥
⎥
⎦
. (A7)

A2. Forward Euler method

The well-known forward Euler method, or simply the
Euler method, is an explicit numerical approximation
methodology for numerically solving ordinary differential
equations, which produces first-order solutions. For the
differential equation

ẋ (t) = f (x, t) (A8)

a numerical approximation of x (t) at t = k0+ kT , where
k ∈ Z is an integer time step with temporal separation of
T , can be made using

x (k + 1) = x (k) + Tf (k, x (k)) . (A9)

It is known that the global approximation error is
proportional to the step size T , and therefore the global
error decreases as T → 0.
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