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A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is
assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point
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1. Introduction

Nowadays, robotic systems are very popular in various
types of applications (Djebrani et al., 2012; Dulęba and
Opałka, 2013; Yarza et al., 2013; Belter et al., 2016).
The presence of robots in the industry is one of the best
known of, but other areas like medical services are taking
more and more advantage of these systems. Applications
like rehabilitation robotics (therapies, home assistance,
orthopedics, etc.) and surgery are worth mentioning here
(Dario et al., 1994).

Regardless of the field, robotic tasks can be divided
into two categories, depending on the robot–environment
interaction, i.e., unconstrained or constrained motions.
The former refers to applications where there is no
interaction with the environment. In the latter, the motion
of the robot is restricted by some interaction with the
medium. In constrained motion tasks, there is an ever
present mechanical coupling between the robot and its
surroundings; moreover, this interaction could change
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over time, which implies that the interaction forces cannot
be disregarded (Hogan, 1985).

To deal with constrained motion systems, two
methods have been proposed. The first one, known as the
direct method, uses force-feedback to specify the desired
interaction force (Volpe and Khosla, 1993). The second
strategy is indirect force control, whose main scheme is
impedance control, as proposed by Hogan (1985); this
approach relates the position errors to the interaction
forces. The interaction between the end-effector and the
environment is then regulated by modifying the system’s
mechanical impedance. Impedance control has triggered
off a number of developments for interaction control.
These include, for instance, a Lyapunov-based approach
(Mendoza et al., 2012), model predictive impedance
control (Falaki and Towhidkhah, 2012), model-free
impedance control (Li et al., 2011) or intelligent control
like neural networks (Dehghani et al., 2010; Modares
et al., 2016), fuzzy logic (Deneve et al., 2008; Akdoğan
and Adli, 2011; Ju et al., 2005), or a combination of
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both (Kiguchi et al., 2007; Xu et al., 2011), as well
as stiffness control in the task-space as in the work of
Chávez-Olivares et al. (2015), where some case studies
of different stiffness regulators are proposed and the
corresponding Lyapunov’s stability analysis is presented.

Impedance control and stiffness control are both
forms of indirect force control. In order to achieve the
desired dynamic behavior, impedance control intends to
regulate mechanical impedance via force feedback (Spong
et al., 2005), where a dynamic model-based compensation
control scheme leads to task-space closed-loop dynamics
given by

ẍ = ẍd −M−1
d (Bdė+Kde+ f),

where Md, Bd and Kd are the desired inertia, damping
and stiffness matrices, respectively, e denotes the tracking
error and f is the measured contact force. On the other
hand, the objective of stiffness control is to regulate
robot stiffness by achieving the desired static behavior
of the interaction. When robot manipulators are used for
force control applications, where the interaction with the
environment is critical, a stiff manipulator makes the task
harder to achieve. By controlling manipulator stiffness
the control objective is more easily attained (Siciliano and
Villani, 2012). In this case, it is possible to construct a
PD-type controller with gravity compensation of the form

τ = JT (q)[−Kvẋ+Kpx̄] + g(q),

where Kv is a derivative gain matrix, Kp is a proportional
gain matrix, x̄ = xd − x, which is the difference between
the desired and the current end-effector position (Kurfess,
2004).

In real systems, saturation is a nonlinearity that
always affects their performance. It is due to intrinsic
limitations of actuators. As such, every controller design
must contemplate the existence of constraints if one wants
to implement it in real life. Ignoring this inevitable
nonlinearity may lead to an undesired behavior of the
system.

In the literature, there are several works that analyze
robotic systems with bounded inputs (see Kelly et al.,
2005), such as PD with gravity compensation, like
feedback controllers with saturating proportional (SP) or
saturating derivative (SD) (Kelly et al., 1997; Santibáñez
and Kelly, 1996; Santibáñez et al., 1998). These
solutions have been proposed assuming specific saturation
functions. Alternatively, PD-type controllers with
generalized saturation nonlinearities were also developed
(see, e.g., Zavala-Río and Santibáñez, 2006; 2007).
Aguiñaga-Ruiz et al. (2009) propose a tracking control
scheme with static feedback to globally stabilize bounded
input manipulators. Also, global adaptive regulators
for bounded input systems and without a saturation
avoidance restriction were developed; for example, in

the work of López-Araujo et al. (2013a), an SP-SD
algorithm with gravity compensation is proposed, and
in another paper the authors present an output feedback
regulator without velocity dependence (López-Araujo
et al., 2013b). They also use generalized saturation
functions to design an adaptive controller for global
control of robot manipulators with saturated inputs
(López-Araujo et al., 2015). Caverly et al. (2014;
2016) propose other PD-type controllers for flexible-joints
robotic manipulators while avoiding actuator saturation,
and where Gibbs parameterization and a Hammerstein
strictly positive real angular rate control term are
employed. Recently, saturating PID-type regulators were
proposed by Mendoza et al. (2015a; 2015b), resulting
in the global stability of the equilibrium point of the
closed-loop system and with a simple tuning of the
controller’s parameters.

Additionally, a first step in addressing the problem
of interaction control for manipulators with bounded
inputs was presented by He et al. (2016). Specifically,
a neural-network based adaptive impedance control was
developed to solve the robot–environment interaction
problem. Both full state and output feedback controllers
were considered, by using an auxiliary signal to handle
the saturation effect of actuators; however, the structure
of the control laws does not ensure that the generation of
bounded control signals will avoid the actuator saturation.

To our knowledge, in the literature there are
no works where constrained–motion controllers (which
generate bounded control signals to avoid saturation)
for robot manipulators, with bounded torque inputs,
and their corresponding stability analyses are presented.
In this paper, we present the stability analysis in
Lyapunov’s sense for a novel saturating stiffness-control
structure of robot manipulators. It is assumed that the
control structure has a generalized form of a PD-type
controller, and that the interaction with the environment
can be modeled as a spring-like elastic force. The
performance of the saturating controller is tested on
a three degree-of-freedom robot manipulator interacting
with a rigid work surface.

This paper is organized as follows. Section 2
includes the notation and definitions used in this work. In
Section 3, the dynamical model of the robot is presented.
The saturating stiffness-control structure proposed is
described in Section 4. Section 5 contains the results of
two tests for the robot–environment interaction. Finally,
conclusions to the paper are presented in Section 6.

2. Notation and definitions

Let A ∈ R
n×m and x ∈ R

n Ai is the i-th row vector of
A, Aij represents the element of A pertaining to the i-th
row and j-th column of A; xi denotes the i-th element of
x. The origin of Rn is represented by 0n and the identity
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matrix of dimension n× n is written as In.
The largest eigenvalue of A is denoted by λmax{A}.

The Euclidean norm of vector x is given as ||x || =√
xT x, while the norm of matrix A is defined as ||A|| =√
λmax{ATA}.

Consider a continuously differentiable scalar
function ζ : R �→ R and a locally Lipschitz, continuous,
scalar function φ : R �→ R, such that ζ(0) = φ(0) = 0.
The derivative with respect to their argument is denoted
by

ζ′(ς) =
dζ

dς
(ς).

The upper right derivative of φ is defined as

D+φ(ς) = lim sup
h→0+

φ(ς + h)− φ(ς)

h
.

Thus,

φ(ς) =

∫ ς

0

D+φ(r) dr,

and (cf. Khalil, 2002)

(ζ ◦ φ)(ς) = ζ(φ(ς)) =

∫ ς

0

ζ′(φ(r))D+φ(r) dr.

Next, a generalized saturation function is defined as
in the work of Mendoza et al. (2015a). A non-decreasing,
Lipschitz continuous function σ : R �→ R is a generalized
saturation one, bounded byM > 0, in the following cases:

(a) ςσ(ς) > 0, ∀ς �= 0.

(b) |σ(ς)| ≤ M , ∀ς ∈ R.

(c) If, in addition, σ(ς) = ς when |ς | ≤ L, for some
0 < L ≤ M , it is said that σ is a linear saturation
function for (L,M).

A generalized saturation function σ satisfies the
properties listed below, proved by López-Araujo et al.
(2013a). For a constant k > 0, the following holds:

1. lim|ς|→∞ D+σ(ς) = 0.

2. ∃σ′
M ∈ (0,∞) : 0 ≤ D+σ(ς) ≤ σ′

M , ∀ς ∈ R.

3.
σ2(kς)

2kσ′
M

≤ ∫ ς

0
σ(kr) dr ≤ kσ′

M ς2

2
, ∀ς ∈ R.

4.
∫ ς

0 σ(kr) dr > 0, ∀ς �= 0.

5.
∫ ς

0 σ(kr) dr → ∞ as ς → ∞.

6. If σ is strictly increasing, then

(a) ς [σ(ς + η)− σ(η)] > 0, ∀ς �= 0, ∀η ∈ R;

(b) σ̄(ς) = σ(ς+a)−σ(a) is generalized saturation
function, strictly bounded by M̄ = M + |σ(a)|,
for any constant a ∈ R.

7. If σ is a linear saturation for (L,M), then, for any
continuous function ν : R �→ R, such that |ν(η)| <
L, ∀η ∈ R, we have ς [σ(ς + ν(η)) − σ(ν(η))] > 0,
for all ς �= 0 and for all η ∈ R.

3. Dynamic model of a robot manipulator

The dynamic model of a robot manipulator of n degrees
of freedom (DOFs), interacting with the environment in a
p-dimensional task-space, can be described as

M(q)q̈+C(q, q̇)q̇ + Fq̇+ g(q) = τ − JT (q)fe, (1)

where q ∈ R
n is the joint displacement vector, q̇ ∈ R

n is
the joint velocity vector, q̈ ∈ R

n is the joint acceleration
vector, M(q) ∈ R

n×n is the (symmetric and positive
definite) inertia matrix, C(q, q̇)q̇ ∈ R

n is the vector
of centripetal and Coriolis torques, g(q) ∈ R

n is the
vector of gravitational torques, and F is the (diagonal and
positive definite) viscous friction matrix. The vector of
control torques is represented by τ ∈ R

n, J(q) ∈ R
p×n

represents the Jacobian matrix of the manipulator, and the
external interaction forces are given by fe ∈ R

p. The
following properties of the dynamic model are very useful
for further analysis (Kelly et al., 2005).

Property 1. The gravity torque term g(q) is a bounded
vector function.1 Equivalently, the elements of the vector
of gravitational torques, gi(q), i = 1, . . . , n, satisfy
|gi(q)| ≤ Bgi, ∀q ∈ R

n, for some positive constant Bgi.

Property 2. Consider the vector of external interaction
torquesJT (q)fe, let feMj represent an upper bound of fej
such that fej ≤ feMj , and let feM � (feM1, . . . , feMp)

T

and Fe � [−feM1, feM1] × · · · × [−feMp, feMp]. For
robot manipulators having only revolute joints, there exist
positive constants BJij , BJi, and BJ such that |JT

ij (q)| ≤
BJij , ‖JT

i (q)‖ ≤ BJi, and ‖JT (q)‖ ≤ BJ , ∀q ∈ R
n,

i = 1, . . . , n, j = 1, . . . p. Furthermore, there exist
positive constants BJfi such that |JT

i (q)fe| ≤ BJfi,
i = 1, . . . , n, ∀q ∈ R

n, ∀fe ∈ Fe.

Suppose that each component of vector τ (namely,
τi) is bounded by a saturation limit Ti > 0; that is, |τi| ≤
Ti, with i = 1, . . . , n. Then, if ui represents the control
signal to the i-th degree of freedom, we have the following
relationship:

τi = Tisat

(
ui

Ti

)
, (2)

where sat(·) is the standard saturation function, sat(ς) =
sign(ς)min{|ς |, 1} (Mendoza et al., 2015a).

The relationship between the control forces applied
in task-space fx and the joint control torques τ is given by

τ = JT (q) fx . (3)

1Property 1 is satisfied for robot manipulators with only revolute
joints (Kelly et al., 2005).
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Then the model (1) can be rewritten in the task-space,
using a coordinate change, as

Mx ẍ+Cx ẋ+ gx+Fx ẋ = fx −fe, (4)

where x = K(q) ∈ R
p is the task-space posture vector

(forward kinematics map), ẋ = J(q)q̇ ∈ R
p represents

the task-space velocity, and ẍ = J̇(q, q̇)q̇+ J(q)q̈ ∈ R
p

is the acceleration vector in task-space, while

Mx = J−T (q)M(q)J−1(q),

Cx =
[
J−T (q)C(q, q̇)−Mx J̇(q, q̇)

]
J−1(q),

gx = J−T (q)g(q),

Fx = J−T (q)FJ−1(q),

where J−T (q) = [J−1(q)]T . The Cartesian dynamic
model (4) is valid only if the manipulator is away from
kinematic singularities, i.e., rank(J(q)) = n, and this is
a condition of operation of the proposed scheme. If the
manipulator is redundant, i.e., J(q) is non-square, then a
right pseudoinverse of the form

J† = JT (q)[J(q)JT (q)]−1 (5)

can be computed instead (Canudas et al., 2012). When
J(q) is square, the pseudoinverse (5) is reduced to the
standard inverse of the Jacobian matrix, J−1(q). With no
loss of generality, in this paper a square Jacobian matrix
is considered, i.e., p = n.

Also, suppose that each component of vector fx is
constrained by a saturation bound Fxj > 0; that is,
|fxj| ≤ Fxj , with j = 1, . . . , p. Then, if uxj represents
the control signal to the j-th degree of freedom, we have
the following relationship:

fxj = Fxjsat

(
uxj

Fxj

)
. (6)

Therefore, from (2)–(3) and (6),

u = JT (q)ux . (7)

The vector of external forces is modeled as a
generalized spring with symmetric stiffness matrix Ke ∈
R

p×p and rest location xe ∈ R
p, i.e.,

fe = Ke[x−xe]. (8)

The task-space dynamical model (4) has the
following properties (Chávez-Olivares et al., 2015).

Property 3. The matrix Mx ∈ R
p×p is symmetric and

positive definite, and satisfies

μmIp ≤ Mx ≤ μMIp

for some constants μM ≥ μm > 0.

Property 4. The matrices Ṁx � d
dt Mx andCx ∈ R

p×p

satisfy

ẋT

[
1

2
Ṁx −Cx

]
ẋ = 0, ∀ ẋ ∈ R

p.

Property 5. The viscous friction matrix Fx ∈ R
p×p

satisfies
fmIp ≤ Fx ≤ fMIp

for some constants fM ≥ fm > 0.

Property 6. The matrix Ke ∈ R
p×p is symmetric and

positive definite and satisfies

kmIp ≤ Ke ≤ kMIp

for some constants kM ≥ km > 0.

4. Saturating PD-type stiffness control for
interaction tasks

The saturating stiffness controller is given by

ux(x, ẋ,q) = −sd(x̄, ẋ)− sP (KPx) + gx, (9)

where x̄ = x−xd for any constant, desired equilibrium
position, xd ∈ R

p, gx is the gravity compensation vector,
KP ∈ R

p×p is a positive definite diagonal matrix, i.e.,
KP = diag[kP1, . . . , kPp] with kPj > 0 for all j =
1, . . . , p,

sP :

{
R

p → R
p,

x �→ (σP1(x1), . . . , σPp(xp))
T ,

(10)

with σPj(·), j = 1, . . . , p, being strictly increasing
generalized saturation functions with bounds MPj , and
sd : Rp × R

p → R
p a continuous vector function, which

is bounded and satisfies

sd(y,0
p) = 0p, (11)

||sd(y, z)|| ≤ κ||z||, (12)

zT sd(y, z) > 0, (13)

∀y, z ∈ R
p, for some positive constant κ (Mendoza et al.,

2015a). Then, for suitable bounds MPj of σPj(·),
|uxj(y, z)| < Fxj , j = 1, . . . , p. (14)

Property 7. Let ux = uPD + gx, with

uPD = −sd(x̄, ẋ)− sP (KPx) (15)

being the corresponding proportional-derivative action of
the controller (9). Then, from (7), we have

|ui| = |JT
i (q)ux | = |JT

i (q)uPD + gi(q)| < Ti. (16)
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Notice that from (16) and (2) we get

Ti > |ui(x, ẋ,q)| = |τi|, i = 1, . . . , n,

for all (x, ẋ,q) ∈ R
p ×R

p ×R
n. Then, along the system

trajectories,

|τi(t)| = |ui(t)| < Ti, i = 1, . . . , n,

for all t ≥ 0. This proves that, under the proposed design,
the saturation limits Ti are never reached.

Property 8. Consider the productJT (q)uPD . Let uM >
0 represent an upper bound of uPD such that ||uPD|| ≤
uM . Now, from (16) and Property 1,

|JT
i (q)uPD + gi(q)| ≤ |JT

i (q)uPD |+Bgi, (17)

assuming that

|JT
i (q)uPD | ≤ ‖JT

i (q)‖‖uPD‖ < Ti −Bgi. (18)

Thus, from Property 2, a sufficient condition on uM is
given by

uM = min
i

{
Ti −Bgi

BJi

}
, (19)

i = 1, . . . , n.

Remark 1. Multiple control structures arise from
the formulation presented here, since sd(x̄, ẋ) can be
designed as follows (López-Araujo et al., 2013a): Let
KD ∈ R

p×p be a positive definite diagonal matrix, i.e.,
KD = diag[kD1, . . . , kDp] with kDj > 0 for all j =
1, . . . , p. An SP-SD stiffness controller is retrieved from
(9) by defining

sd(x̄, ẋ) = sD(KDẋ), (20)

where

sD :

{
R

p → R
p,

x �→ (σD1(x1), . . . , σDp(xp))
T
,

(21)

with σDj(·), j = 1, . . . , p, being generalized saturation
functions with bounds MDj . MPj and MDj satisfy

√√
√
√

p∑

j=1

[MPj +MDj ]2 < uM . (22)

Also, an SPD stiffness controller can be obtained by
defining

sd(x̄, ẋ) = sP (KP x̄+KDẋ)− sP (KP x̄), (23)

with bounds MPj , of the strictly increasing generalized
saturation functions σPj(·), j = 1, . . . , p, satisfying

√√
√
√

p∑

j=1

M2
Pj < uM . (24)

Remark 2. Note that the fulfillment of the inequalities
(22) and (24), with uM chosen as (19), is not necessary
but only sufficient for avoiding saturation. Hence,
the proposed scheme permits successful implementations
with values (Ti −Bgi)/BJi higher than uM .

4.1. Closed-loop analysis. By considering the robot
model (4) and the saturating PD-type stiffness controller
(9), the closed-loop dynamics can be written as

Mx ẍ+Cx ẋ+Fx ẋ = −sd(x̄, ẋ)− sP (KP x̄)− fe.
(25)

Under stationary conditions (ẍ = ẋ = 0p), it can be
obtained that

fe = −sP (KP x̄). (26)

Since σPj(·), are strictly increasing, generalised
saturation functions; there is an x̄∗ such that
fe = −sP (KP x̄∗) or, equivalently,

x̄∗
j = − 1

kPj
σ−1
Pj (fej), j = 1, . . . , p. (27)

Therefore, the equilibrium point is

[
x̄
ẋ

]
=

[
x̄∗

0p

]
. (28)

4.2. Lyapunov stability analysis. In order to analyze
the stability of the equilibrium point, the following scalar
function is defined:

V (x̄, ẋ) =
1

2
ẋT Mx ẋ+

∫ x̄

0

sTP (KP r) dr (29)

+
1

2
[x−xe]

TKe[x−xe]− V0,

where

V0 =

∫ x̄∗

0

sTP (KP r) dr+
1

2
[x̄∗+xd−xe]

TKe[x̄
∗+xd−xe]

∫ x̄

0

sTP (KP r) dr =

p∑

j=1

∫ x̄j

0

σPj(kPjrj) drj .

From Properties 3 and 6, and the definition and the
corresponding properties of a generalized saturation
function, we have that

V (x̄, ẋ) > 0. (30)

Observe that W (0p, ẋ) → ∞ as ‖ ẋ ‖ → ∞, and
W (x̄,0p) → ∞ as ‖ x̄ ‖ → ∞. Thus, V (x̄, ẋ) is
concluded to be positive definite and radially unbounded.

The derivative of the Lyapunov function (29), along
the trajectories of the closed-loop system (25) with fe
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defined as (8), is given as follows:

V̇ (x̄, ẋ) = ẋT Mx ẍ+
1

2
ẋT Ṁx ẋ+sP (KP x̄)

T ẋ

+ ẋT Ke[x−xe]

= ẋT [−sd(x̄, ẋ)− sP (KP x̄)−Ke[x−xe]

−Cx ẋ−Fx ẋ] +
1

2
ẋT Ṁx ẋ+sTP (KP x̄) ẋ

+ ẋT Ke[x−xe]

=− ẋT sd(x̄, ẋ) + ẋT

[
1

2
Ṁx −Cx

]
ẋ

− ẋT Fx ẋ

=− ẋT sd(x̄, ẋ)− ẋT Fx ẋ . (31)

Therefore, from Properties 4 and 5 as well as sd(x̄, ẋ)
satisfying (11) and (13), V̇ (x̄, ẋ) ≤ 0.

However, according to LaSalle’s invariance principle
(Khalil, 2002), consider the set

Ω = {x̄, ẋ ∈ R
p : V̇ (x̄, ẋ) = 0}

= {ẋ = 0p, x̄ ∈ R
p}. (32)

Then, ẋ ≡ 0p ⇒ ẍ ≡ 0p, and from the closed-loop
dynamics (4), ẋ ≡ ẍ ≡ 0p ⇒ fe = −sP (KP x̄) ⇒
x̄ = x̄∗. Therefore, by invariance theory, the closed–loop
equilibrium point (x̄(t), ẋ(t)) ≡ (x̄∗,0p) is concluded to
be asymptotically stable.

5. Simulation results

In order to validate the efficiency of the proposed control
scheme, three interaction tests were implemented using
the model of two 3-DOF robot manipulators

5.1. Modeling robot manipulators. The first
dynamic model corresponds to the anthropomorphic robot
ROTRADI and was reported by Chávez-Olivares et al.
(2012). According to the parameter values, Property 1
is satisfied with Bg1 = 0, Bg2 = 57.7414 Nm, and
Bg3 = 2.1138 Nm, while Property 2 with BJ1 = 0.9341
m, BJ2 = 0.9 m, and BJ3 = 0.45 m. The maximum
allowed torques (input saturation bounds) are T1 = 50
Nm, T2 = 150 Nm and T3 = 15 Nm, respectively.

For comparison purposes, another robot with
different dynamics was considered; thus, the second robot
is a SCARA manipulator, and its dynamical model is
characterized by

M(q)q̈+C(q, q̇)q̇+ f(q̇)+g(q) = τ −JT (q)fe, (33)

where

M(q) =

⎡

⎣
θ1 + 2θ2 cos q2 θ3 + θ2 cos q2 0
θ3 + θ2 cos q2 θ3 0

0 0 θ4

⎤

⎦ ,

C(q, q̇) =

⎡

⎣
−θ2q̇2 sin q2 −θ2(q̇1 + q̇2) sin q2 0
θ2q̇1 sin q2 0 0

0 0 0

⎤

⎦ ,

f(q̇) =

⎡

⎣
θ5q̇1 + θ6 sign q̇1
θ7q̇2 + θ8 sign q̇2
θ9q̇3 + θ10 sign q̇3

⎤

⎦ ,

g(q) =

⎡

⎣
0
0

−9.81θ4

⎤

⎦ ,

with θ1 = 2.8423, θ2 = 0.3195, θ3 = 0.3438, θ4 = 1.16,
θ5 = 1.158, θ6 = 6.571, θ7 = 0.325, θ8 = 1.008, θ9 =
0.2, θ10 = 0.7 and

J(q) =

⎡

⎣
−0.45 sin q1 − 0.45 sin (q1 + q2) J12 0
0.45 cos q1 + 0.45 cos (q1 + q2) J22 0

0 0 −1

⎤

⎦ ,

where

J12 = −0.45 sin (q1 + q2),

J22 = 0.45 cos (q1 + q2).

Therefore, Property 1 is satisfied with Bg1 = 0, Bg2 = 0,
andBg3 = 11.3796Nm, while Property 2 with BJ1 = 0.9
m, BJ2 = 0.45 m, and BJ3 = 1.0 m. The maximum
allowed input saturation bounds are T1 = 150 Nm, T2 =
15 Nm and T3 = 130 N, respectively.

5.2. Interaction tests. The proposed controller (9)
was tested in its SP-SD form, under the respective
consideration of (22), with

σPj(ζ) =

{
ζ, |ζ| ≤ LPj ,

ρPj(ζ), |ζ| > LPj ,
(34)

σDj(ζ) = MDj sat(ζ/MDj), (35)

where

ρPj(ζ) = sign(ζ)LPj

+ (MPj − LPj) tanh

(
ζ − sign(ζ)LPj

MPj − LPj

)
,

j = 1, 2, 3, with 0 < LPj < MPj . Therefore, σ′
DjM = 1,

∀j ∈ {1, 2, 3}, and the inequality (12) is satisfied with
κ = maxj{kDj}.

For the controller’s performance evaluation, three
cases were considered and referred to as Tests 1, 2, and
3, respectively.
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5.2.1. Test 1: Regulation to a single point. Test 1
consisted in getting that the robot’s end effector interacts
with a rigid flat surface (stiffness of 10000 N/m) inclined
at 20 degrees to the horizontal and located inside the
robot’s task-space. The desired and initial conditions for
the end-effector were (0.2881, 0.4483, −0.4755) m and
(0.2881, 0.4248, −0.4108) m, respectively.

First, the anthropomorphic robot was considered;
the corresponding initial joint position was q(0) =
[−5, 95,−95]T degrees and the saturation parameters of
the controller were selected as MP1 = 25, MP2 = 20,
MP3 = 63.5, MD1 = 3, MD2 = 3, MD3 = 32, and
LPj = 0.9MPj , j = 1, 2, 3, while the control gains
were chosen as: KP = diag[1550, 1550, 1250] N/m and
KD = diag[100, 100, 370] N s/m. Figures 1–3 show the
results for the anthropomorphic manipulator in Test 1. In
Fig. 1, we show the positioning errors in the x, y and
z directions.2 Before the robot contacts the surface, the
error components tend to zero, whereas when the robot’s
end effector interacts with the surface, a normal contact
force is generated; then, the position error is different than
zero, which is a desired feature. However, in Fig. 2, it can
be observed that the steady-state force error tends to zero
during robot–environment interaction. Furthermore, note
that, from the graphs in Fig. 3, the control objective is
achieved, avoiding input saturation.
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Fig. 1. Test 1: position errors in the task-space (anthro-
pomorphic robot).

Then, the SCARA manipulator was used; the
corresponding initial joint position was q(0) =
[111.08,−110.46, 0.56]T and the parameters of the
SP-SD controller were MP1 = 25, MP2 = 20, MP3 =
63.5, MD1 = 3, MD2 = 3, MD3 = 32, and LPj =
0.9MPj , j = 1, 2, 3, while, KP = diag[750, 750, 700]

2In the notation used here the axes x, y and z correspond to x1, x2

and x3, respectively; i.e., x = [x1, x2, x3]T .
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Fig. 2. Test 1: force error components and the normal inter-
action force (anthropomorphic robot).
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Fig. 3. Test 1: control torques applied (anthropomorphic robot).

and KD = diag[150, 150, 1900]. In Fig. 4, we can
see smaller positioning errors in the x and y directions;
this is because the structure of the SCARA configuration
makes the interaction force mainly reflected in the z-axis
direction. In Fig. 5, a steady-state force error close to
zero and the corresponding normal interaction force can
be observed. Also, input saturation is avoided as shown in
Fig. 6.

5.2.2. Test 2: Tracking a point-to-point trajectory.
On the other hand, Test 2 consisted in making the robot’s
end-effector track a predefined point-to-point path over
the same rigid flat surface, but now no inclination was
considered. For both manipulators, the same saturation
parameters used in Test 1 were assumed. In the case
of the controller gains, only the proportional gains of
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Fig. 4. Test 1: position errors in the task-space (SCARA robot).
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Fig. 5. Test 1: force error components and the normal inter-
action force (SCARA robot).

the ROTRADI robot were modified so that KP =
diag[10550, 10550, 1250]N/m. The path planning was as
follows:

1. The robot must reach the position (0.2881, 0.4248,
−0.5000) m, starting from the initial condition
(0.2881, 0.4248, −0.4108) m in 1 seconds.

2. Using a linear interpolator, the robot must arrive
at the position (0.3181, 0.3248, −0.5000) m in 5
seconds.

3. Using a linear interpolator, the robot must get to the
position (0.3481, 0.4248, −0.5000) m in 5 seconds.

The corresponding desired path and the trajectory
followed by the anthropomorphic and SCARA robots are
depicted in Figs. 7 and 8, respectively. The positioning
errors, for the ROTRADI robot, are presented in Fig. 9,

and it shows a suitable performance, with the components
x and y tending to zero, and the z component tending
to the difference between zd and ze. Therefore, it is
ensured that the end effector is in contact with the surface
and the interaction forces are being regulated. Finally, in
Fig. 10, the control signals applied to the joints of the
robot manipulator are presented. Because none of the
components τi exceeds the corresponding torque limits
Ti, it can be concluded that the task is performed without
saturation of the system inputs.
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Fig. 6. Test 1: control torques/forces applied (SCARA robot).

5.2.3. Test 3: Robustness of the control scheme. In
the last validation test, the proper controller performance
was examined considering two scenarios: (a) the robot’s
behavior close to a singularity and (b) the operation of
the control algorithm for inputs with smaller bounds. The
ROTRADI robot was considered in Test 3.

In Test 3a, the robot tries to track the same path
described in Test 2, but starting close to a singular
configuration (q(0) = [−5, 55,−85]T degrees), as can
be seen in Fig. 11, where the singularities are defined
by the points that are on the plane q2–q3 and for which
|det(J(q))| = 0; for example, q = [−5, 45,−90]T

implies det(J(q)) = 0 so we get a singularity.
As can be observed in Fig. 12, the effect of

singularity is mainly reflected in the x component of
the position error. However, the control signals remains
bounded, as seen in Fig. 13. Then, the robot tries to follow
the path in contact with the surface and without saturation
of the system inputs.

In Test 3b, on the other hand, the maximum
torque for the second joint of the ROTRADI robot was
considered as T2 = 125 Nm, since the tracking task was
more demanding. According to Remark 2, a suitable
tuning of the controller parameters can be obtained by
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Fig. 7. Test 2: path tracking (anthropomorphic robot).

computing (T2 − Bg2)/BJ2; therefore, the higher value
in Test 2 was 102.51 while in Test 3b it was 74.73, and
this restricts further selection of MPj and MDj . Then the
new controller parameters were MP1 = 21, MP2 = 19,
MP3 = 42, MD1 = 3, MD2 = 3, MD3 = 25, and
LPj = 0.9MPj , j = 1, 2, 3, while, the control gains
were chosen as KP = diag[10550, 15550, 1350]N/m and
KD = diag[100, 100, 370] N s/m.

Despite the additional constraints, the robot’s
behavior is very similar to that obtained in Test 2 (see
Figs. 9 and 10) and this can be observed in Figs. 14 and
15. Therefore, a suitable path tracking in contact with the
surface is achieved and no saturation is presented.

6. Conclusions

In this paper, a generalized PD-type stiffness
control scheme for robot manipulators with bounded
inputs has been presented. To our knowledge, the
saturating structure of this approach represents a first
step in addressing the problem of controlling the
robot–environment interaction, by considering the effect
of saturation of the actuators of a robot manipulator.

The suitable performance of the control scheme was
supported by a stability analysis in the Lyapunov sense,
and its efficiency was verified through implementations on
two 3-DOF robot manipulators. Moreover, the proposed
scheme uses generalized saturation functions to achieve
the required boundedness, which include the hyperbolic
tangent and the conventional saturation as particular
cases, and give rise to multiple particular PD-type
stiffness controllers, permitting further innovation in their
design and a wide range of possibilities for performance
improvement.
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Fig. 8. Test 2: path tracking (SCARA robot).
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Fig. 9. Test 2: position errors in the task-space (anthropomor-
phic robot).
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