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In this paper, a control framework including active fault-tolerant control (FTC) and reference redesign is developed subject
to actuator stuck failures under input saturations. FTC synthesis and reference redesign approaches are proposed to guaran-
tee post-fault system safety and reference reachability. Then, these features are analyzed under both actuator stuck failures
and constraints before fault-tolerant controller switches. As the main contribution, actuator stuck failures and constraints
are unified so that they can be easily considered simultaneously. By means of transforming stuck failures into actuator con-
straints, the post-fault system can be regarded as an equivalent system with only asymmetrical actuator constraints. Thus,
methods against actuator saturations can be used to guarantee regional stability and produce the stability region. Based
on this region, stuck compensation is analyzed. Specifically, an unstable open-loop system is considered, which is more
challenging. Furthermore, the method is extended to a set-point tracking problem where the reachability of the original
reference can be evaluated. Then, a new optimal reference will be computed for the post-fault system if the original one is
unreachable. Finally, simulation examples are shown to illustrate the theoretical results.

Keywords: fault-tolerant control (FTC), actuator stuck failure, actuator constraints, reference redesign, linear matrix in-
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1. Introduction

Fault-tolerant control (FTC), aiming to guarantee
closed-loop system stability and maintain admissible
degradation performance in the presence of component
malfunctions (Noura et al., 2009), has attracted
considerable attention over the last few decades (Zhang
and Jiang, 2008). Taking an actuator, for example,
malfunctions can be divided into two categories: faults
and failures. An actuator fault signifies that partial
effectiveness is lost, while an actuator failure means that
total effectiveness is lost and cannot respond to the control
signal. In this paper, a kind of actuator failure, namely, a
stuck failure, is brought into focus, which signifies that
the actuator locks at a fixed place. The actuator stuck
failure has two characteristics different from actuator
faults: (i) the decrease of available control input channels,

∗Corresponding author

and (ii) constant control input to a post-fault system
produced by the stuck actuator.

Compared with a number of research works on
actuator faults, such as those by Xu et al. (2017) or
Cen et al. (2015), less research focused on actuator stuck
failures because the use of hardware redundancy is a
traditional way to improve system reliability. In the
presence of hardware redundancy, stuck actuators can
be directly cut off from plants. However, this strategy
is invalid in the absence of hardware redundancy, like
with unmanned aerial vehicles, which have no or less
hardware redundancy because of weight and volume
limitations (Qi et al., 2014). Thus, the influence produced
by stuck actuators has to be considered. Famularo
et al. (2015) examined multiple-stuck-position actuator
failures. All admissible stuck failures were covered by
a set of piecewise affine systems, and then controllable
sets were able to be computed according to these systems.
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In the work of Yang et al. (2010), a steady-state-based
approach was proposed which can be used to detect small
actuator stuck failures including a zero value. Based
on the approach, a dynamic output feedback controller
was designed for both fault-free and post-fault systems.
The work Wu et al. (2014), non-parameterizable bounded
time-varying stuck failures were assumed to be piecewise
continuous bounded functions and they were compensated
by a robust adaptive fault-tolerant controller. Jiang
and Chowdhury (2005) proposed a methodology for
detection and accommodation of multi-type faults and
stuck failures. An active FTC approach was used and
extended to a system with an unknown input.

However, the drawback of these approaches is
the lack of considering actuator constraints. Without
these, the available control inputs of a post-fault system
are infinite, which implies that the system has infinite
redundancy. On the other hand, with actuator constraints
and an actuator stuck failure, the effective ability of the
other actuators to remain failure-free is decreased because
some effectiveness is used to compensate a constant
control input and the lost control effectiveness caused
by the stuck actuator. Under this condition, actuator
saturation is more likely to occur. To avoid saturation,
locally bounded controller outputs of a post-fault system
were considered by Jiang et al. (2006) through appropriate
assumptions. Xu et al. (2015) used a backstepping
fault-tolerant controller with a command filter against
both actuator faults and stuck failures under actuator
constraints for a near-space vehicle. Moreover, in order
to maintain admissible degradation performance, new
references will be required if the original one is not
reachable. Taking set-point reference, for example,
unreachability means that actuators are saturated in
steady-state under this reference.

In the work of Dardinier-Maron et al. (1999), a new
reference of post-fault system was generated according
to the system’s remaining performance. The distance
between the new reference and the original one before
failure is minimum. Zhang and Jiang (2003) investigated
a control input management approach to compute a new
steady-state reference which is based on the open-loop
gain of a post-fault system in the steady case. The tuned
experimentally so that the new reference may not be
optimal.

In the work of Theilliol et al. (2008), a model
predictive control strategy was proposed to redesign the
new reference on-line which was achieved by solving
an optimization problem, but only the reduction in
effectiveness of actuators was considered. The issue
neglected by these approaches is that not all faults can
be compensated when system performance is limited. It
is necessary to analyze the compensability of actuator
faults depending on the remaining systems performance.
What is more serious, if a system subject to actuator

constraints is open-loop unstable, only regional stability
can be guaranteed (Wu and Soto, 2003). The approaches
above cannot provide the stability region of a post-fault
system which is open-loop unstable.

In this paper, actuator stuck failures and
asymmetrical actuator constraints are considered
simultaneously subject to an open-loop unstable system.
As the main contribution, actuator stuck failures are
originally defined as actuator constraints so that a
new fault-free system with new actuator constraints is
constructed. Based on the new system, the controller
is reconfigured to achieve failure accommodation.
Compared with the conventional FTC structure, an
extended control framework is developed to guarantee
post-fault system safety. As shown in Fig. 1, the
framework consists of three parts: a reconfigurable
controller, an evaluator and reference redesign module.
The evaluator module is used to analyze the performance
of post-fault system based on failure information and the
original reference input. If the reference is unreachable,
reference redesign module will compute a new optimal
one to guarantee system safety. The required information
of actuator stuck failures is supposed to be provided
correctly by an FDI module. The design of the FDI
module is beyond the scope of this article and related
methods can be found in various contributions (e.g.,
Yang et al., 2010; Chen and Patton, 2012; Ossmann and
Varga, 2015).

The paper is organized as follows. In Section 2,
definitions of actuator stuck failures and actuator
constraints are reviewed. Then, the design objectives of
this paper are presented. Section 3 discusses the main
results in two parts, including gain synthesis and set-point
tracking. Simulation samples are shown in Section 4.
Section 5 concludes the paper.

2. Problem statement

Consider a system as the following expression:{
ẋ(t) = Ax(t) +B sat(u(t))

y(t) = Cx(t),
(1)

where x ∈ R
n is the system state vector, u ∈ R

m is the
actuator output vector in absence of constraints, y ∈ R

p

is the system controlled output vector, A, B, C are
constant matrices with appropriate dimensions and sat(·)
is a nonlinear function defined by

sat(ui(t)) =

⎧⎪⎨
⎪⎩

umax
i , ui(t) > umax

i ,

ui(t), umin
i ≤ ui(t) ≤ umax

i ,

umin
i , ui(t) < umin

i ,

where i = 1, . . . ,m, umin and umax signify constant
actuator constraints. For convenience, we set umax

i =
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Fig. 1. Proposed control framework.

αi, umin
i = −βi and α = diag[α1, α2, . . . , αm],

β = diag[β1, β2, . . . , βm]. Note that αi = βi

represents the fact that the constraints of the i-th actuator
are symmetrical and αi �= βi stands for asymmetrical
constraints. These are considered in the following analysis
to generalize the proposed method.

Actuator stuck failures can be modeled as

u(t) = Γuc(t) + (Im×m − Γ)ū,

where uc(t) represents the controller output vector and
ū is a constant vector. Γ = diag(γ1, γ2, . . . , γm)
and γi = 1 or 0, where γi = 1 means that the i-th
actuator is fault-free and γi = 0 represents the fact that the
i-th actuator is lock-in-place so that the actuator cannot
respond the control signal uc(t).

Hence, the actuator output vector in the absence
of constraints can be divided into two parts: u(t) =
[uT

0 (t) ū
T
f ]

T in a stuck-failure case, where u0(t) ∈ R
m0

is the fault-free actuator output, ūf ∈ R
mf is the stuck

actuator output and m0 +mf = m. The control matrix B
can be decomposed into [B0 Bf ] with B0 ∈ R

n×m0 and
Bf ∈ R

n×mf .
In the following discussion, assume that the first

m0 actuators are fault-free and the last mf actuators are
stuck. Then the system (1) in the stuck-failure case can be
described as{

ẋ(t) = Ax(t) +B0 sat(u0(t)) +Bf ūf ,

y(t) = Cx(t).
(2)

The following discussion will be based on the
system (2), which satisfies two assumptions.

Assumption 1. The post-fault system (2) is globally
stable in the absence of actuator constraints.

Assumption 2. rank(A) = n.

Specifically, an open-loop unstable system is
considered in the paper. For an open-loop unstable system

under actuator constraints, global stability cannot be
guaranteed (Wu and Soto, 2003), so that regional stability
has to be considered. At the same time, actuator stuck
failures can affect the stability region by reducing the
number of available control inputs and bringing a constant
control input. Both actuator stuck failures and constraints
should be taken into account when calculating regions
so that unifying failures and constraints will simplify
the problem of controller synthesis and performance
analysis. Simultaneously, the analysis of stuck-failure
compensability and reference reachability is also related
to stability regions. Consequently, the following problems
should be solved to provide scientific contributions of the
paper:

Problem 1. Find a solution to unify actuator stuck failures
and constraints, because they are coupled due to actuators
and both of them can affect the stability region.

Problem 2. Design a fault-tolerant controller to
guarantee post-fault system regional stability and analyze
the compensability of actuator stuck failures before
fault-tolerant controller switches.

Problem 3. Design a fault-tolerant and set-point tracking
controller and analyze reference reachability before
controller switches. If the original one is unreachable,
compute a new optimal reference for the system.

3. Main results

3.1. Gain synthesis problem against actuator stuck
failures under constraints. Due to the mutual influence
of actuator stuck failures and constraints, both of these
factors must be considered at the same time. In order to
unify them, actuator stuck failures are defined as actuator
constraints.

Recall the state equation of the post-fault system (2),

ẋ(t) = Ax(t) +B0 sat(u0(t)) +Bf ūf . (3)
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The constant control input ūf caused by a stuck actuator,
Fig. 2(a), can be described as

ūf = uf(t) + ω(t), (4)

where uf(t) ∈ R
mf and ω(t) ∈ R

mf satisfy the
following relationship, as shown in Fig. 2(b):

ūf − ε ≤ uf(t) ≤ ūf + ε, (5)

− ε ≤ ω(t) ≤ ε, (6)

where ε ∈ R
mf and ε = [εm0+1, εm0+2, . . . , εmf

] ≥ 0.
Note that βf = diag[−(ūf−ε)] and αf = diag[ūf+

ε] are lower and upper bounds of uf(t) so that uf (t)
can be described as sat(uf (t)). The state equation (3)
is rewritten as

ẋ(t) = Ax(t) + [B0 Bf ]

{[
sat(u0(t))
sat(uf (t))

]
+

[
0

ω(t)

]}
= Ax(t) +B sat(ũ(t)) +Bfω(t),

(7)
with new constraints α̃ = diag[α0 αf ] and β̃ =
diag[β0 βf ], where α0 and β0 are bounds of the remaining
fault-free actuators. Obviously, if ūf is non-zero, the
constraints of uf (t) will be asymmetrical.

To the best of our knowledge, this method, which
defines actuator stuck failures as actuator constraints, has
never been investigated before and is firstly proposed in
this paper.

Asymmetrical constraints can be transformed into
symmetrical ones according to the following equation, as
proposed by Benhayoun et al. (2013).

sat(ũ(t)) =
α̃+ β̃

2
sat(v(t)) +

α̃− β̃

2
ζ, (8)

where the control input v(t) satisfies −1 ≤ v(t) ≤ 1,
and ζ is a unit vector. Clearly, the constraints of v(t) are
symmetrical, as shown in Fig. 2(c).

Then the state equation can be described as

ẋ(t) = Ax(t) + B
α̃+ β̃

2
sat(v(t))

+B
α̃− β̃

2
ζ +Bf

αf + βf

2
ω̃(t)

= Ax(t) + B̃ sat(v(t)) + B̃f ω̃(t) +B
α̃− β̃

2
ζ,

(9)
where −1 ≤ v(t) ≤ 1, −1 ≤ ω̃(t) ≤ 1,

B̃ = B
α̃+ β̃

2
, B̃f = Bf

αf + βf

2
. (10)

In order to remove the constant term B α̃−β̃
2 ζ from

(9), a new state is defined as

x̃(t) = x(t) +A−1B
α̃− β̃

2
ζ (11)

Then a new state equation of an open-loop system,
which is equal to (3), is obtained,

˙̃x(t) = Ax̃(t) + B̃ sat(v(t)) + B̃f ω̃(t). (12)

Note that, compared with the system (3), the system
(12) only has actuator constraints but no actuator stuck
failures. It should also be pointed out that the stability of
the system (12) is a sufficient conditions of the stability
of the system (3). Thus, actuator stuck failures and
constraints are unified, and Problem 1 has been solved.

Then, considering the system (12) with
state-feedback controller v(t) = Kx̃(t),

˙̃x(t) = Ax̃(t) + B̃ sat(Kx̃(t)) + B̃f ω̃(t), (13)

the gain matrix K can be determined by the following
theorem to guarantee regional stability and prevent
actuators from saturation.

Theorem 1. Given ε ≥ 0, η > 0, if there exists a
symmetric positive-definite matrix W ∈ R

n×n, a matrix
Y ∈ R

m×n satisfies[
1 Yi

∗ W

]
≥ 0, i = 1, . . . ,m, (14)

WAT +AW+Y T B̃T +B̃Y +
1

η
B̃f B̃

T
f +ηW < 0, (15)

where Yi denotes the i-th row of matrix Y ; then the stabil-
ity region of the system (13) can be represented by ellip-
soidal invariant set Ω(P ) = {x̃(t) ∈ R

n|x̃T (t)P x̃(t) ≤
1}, with P = W−1. At the same time, actuators are never
saturated for x̃(t) ∈ Ω(P ), with K = Y P .

Proof. The satisfaction of relations (14) denotes Ω(P ) ⊆
Ξ(K) =

{
x̃(t) ∈ R

n
∣∣ |Kix̃(t)| ≤ 1, i = 1, . . . ,m},

which implies that actuator constraints will be satisfied if
x̃(t) ∈ Ω(P ) (Hu et al., 2002). Considering a Lyapunov
function V (x̃(t)) = x̃T (t)P x̃(t) > 0 and −1 ≤ ω̃(t) ≤
1, its time-derivative is

V̇ (x̃(t)) = x̃T (t)[(A + B̃K)TP + P (A+ B̃K)]x̃(t)

+ ω̃T (t)B̃T
f P x̃(t) + x̃T (t)PB̃f ω̃(t)

≤ x̃T (t)[(A + B̃K)TP + P (A+ B̃K)

+
1

η
PB̃f B̃

T
f P ]x̃(t) + η

= x̃T (t)[(A + B̃K)TP + P (A+ B̃K)

+
1

η
PB̃f B̃

T
f P + ηP ]x̃(t)− ηx̃T (t)P x̃(t) + η.

Note that, on the boundary of Ω(P ), x̃T (t)P x̃(t) = 1.
Hence V̇ (x̃(t)) < 0 if the following inequality is satisfied:

(A+ B̃K)TP + P (A+ B̃K) +
1

η
PB̃f B̃

T
f P + ηP < 0.
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Fig. 2. Redefinition of the actuator stuck failure as actuator constraints: stuck failure (a), asymmetrical constraints (b), symmetrical
constraints (c).

Then (15) is achieved by pre- and post-multiplying the
above inequality by P−1 and replacing KP−1 with Y .

�
Thus, regional stability of the system (13) is

guaranteed by stability region Ω(P ). According to
(11), the stability region of x(t) is Ωx(P ) = {x(t) ∈
R

n|(x(t) + A−1B α̃−β̃
2 ζ)T (t)P (x(t) + A−1B α̃−β̃

2 ζ) ≤
1}. Obviously, Ωx(P ) and Ω(P ) are ellipsoids with
the same scale and shape, but their centers are different.
If actuator constraints are symmetrical, the center of
Ω(P ) will be the origin and the one of Ωx(P ) will be

−A−1B α̃−β̃
2 ζ = −A−1B[0 ūT

f ]
T . Clearly, the center

is related to stuck failure ūf .

Remark 1. The system (12) is not affected by the value
of stuck failure ūf . Thus, the existing research results
against actuator constraints are able to be used for stuck
compensation analysis.

In order to employ Theorem 1, the value of ε
should be selected first. The following theorem improves
Theorem 1 and provides a way to fix ε and the other
variables of Theorem 1 together.

Theorem 2. Given η > 0, if there exists a symmetric
positive-definite matrix W ∈ R

n×n, a matrix Y ∈ R
m×n

and a set of positive scales ε = [εm0+1, εm0+1, . . . , εmf
]

satisfying [
1 Yi

∗ W

]
≥ 0, i = 1, . . . ,m0,

[
εj Yj

∗ W

]
≥ 0, j = m0 + 1, . . . ,mf ,

WAT +AW + Y T B̄T + B̄Y

+
1

η
Bf

⎡
⎢⎣

εm0+1 0
. . .

0 εmf

⎤
⎥⎦BT

f + ηW < 0,

then the ellipsoid Ω(P ) = {x̃(t) ∈ R
n|x̃T (t)P x̃(t) ≤ 1}

is an invariant set and satisfies Ω(P ) ⊆ Ξ(K), where
εi=

√
εi i = m0+1, . . . ,mf , P = W−1, Yi, Yj represent

the i-th, j-th rows of matrix Y , and

K =

⎡
⎢⎢⎢⎢⎣

Im0×m0 0
1

εm0+1

. . .
0 1

εmf

⎤
⎥⎥⎥⎥⎦Y P.

Proof. Consider Eqn. (10),

B̃ = B
α̃+ β̃

2

= B

[
α0+β0

2 0
0 Imf×mf

] [
Im0×m0 0

0 diag[ε]

]

= B̄

[
Im0×m0 0

0 diag[ε]

]
,

B̃f = Bf
αf + βf

2
= Bfdiag[ε].

Thus, the condition (15) of Theorem 1 can be
rewritten as

WAT +AW + Y T B̃T + B̃Y +
1

η
B̃f B̃

T
f + ηW

= WAT +AW + Y T

[
Im0×m0 0

0 diag[ε]

]
B̄T

+ B̄

[
Im0×m0 0

0 diag[ε]

]
Y

+
1

η
Bfdiag[ε]diag[ε]B

T
f + ηW

= WAT +AW + Ȳ T B̄T + B̄Ȳ

+
1

η
Bf

⎡
⎢⎣

ε2m0+1 0
. . .

0 ε2mf

⎤
⎥⎦BT

f + ηW < 0,
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with

Ȳ =

[
Im0×m0 0

0 diag[ε]

]
Y.

In order to guarantee |Kx̃(t)| ≤ 1, K̄ = Ȳ P and
|K̄x̃(t)| ≤ [I1×m0 , ε]

T should be satisfied which amount
to [

1 Ȳi

∗ W

]
≥ 0, i = 1, . . . ,m0

[
ε2j Ȳj

∗ W

]
≥ 0, j = m0 + 1, . . . ,mf .

Thus, replace Ȳ and [ε2m0+1, ε
2
m0+2, . . . , ε

2
mf

] with
Y and ε = [εm0+1, εm0+2, . . . , εmf

], respectively, and
Theorem 2 is proved. �

According to the stability region of a post-fault
system, failure compensability can be analyzed before
fault-tolerant controller switches. Assume that the stuck
failure ūf occurs at instant tu, and it is detected and
isolated at instant tf . Note that the time delay between
tu and tf is due to the FDI module, and before the
stuck failure is detected and isolated, the system is
also controlled by the fault-free controller. Thus, the
fault-tolerant controller will replace the fault-free one at
instant tf . Define the related system states x(tf ) at instant
tf . Because all of the states in Ωx(P ) can guarantee the
stability of a post-fault system and Ωx(P ) is an invariant
set, the stuck failure can be compensated by the new
controller despite FDI delay if

x(tf ) ∈ Ωx(P ).

In other words, if x(tf ) is involved in the stability region
Ωx(P ), the post-fault system will be stabilized by the
redesigned controller through Theorem 2 under actuator
stuck failure ūf and actuator constraints. Furthermore,
because Ωx(P ) is an invariant set, if the initial state of
post-fault system, x(tf ), is inside the set, the post-fault
system will be stable as t → ∞. Hence, before controller
switches, the failure compensability can be analyzed.
Thus, a solution to Problem 2 is found.

Note that the proposed method is just interested
in x(tf ), and FDI time delay has no influence on the
proposed method itself. On the other hand, if the time
delay is too large, the post-fault system may be out
of order. The longest allowed FDI time delay can be
calculated as described by Tabatabaeipour and Blanke
(2014).

Remark 2. The stability region Ωx(P ) calculated by
Theorems 1 and 2 is a subset of the actual stability region
because the stability criterion used in Theorem 1 and 2
is a sufficient condition and the ellipsoid invariant set is
conservative. Thus, x(tf ) ∈ Ωx(P ) is also a sufficient
condition for which the stuck failure ūf is compensable.
Under this condition, the stability region Ωx(P ) should be

enlarged to decrease the conservative property and some
methods have been proposed to enlarge or even obtain the
largest region (da Silva and Tarbouriech, 2005; Li and Lin,
2013; Hu et al., 2002).

3.2. Set-point tracking against actuator stuck failures
and constraints. The control objective is to guarantee
the stability of the post-fault system with acceptable
set-point tracking performance. Consider the system (2)
with integrator e(t) as follows:⎧⎪⎨

⎪⎩
ẋ(t) = Ax(t) +B0 sat(u0(t)) +Bf ūf ,

y(t) = Cx(t),

ė(t) = r − y(t),

where e(t) =
∫
(r − Cx(t)) dt ∈ R

p, and r ∈ R
p is a

set-point reference with constraint rT r ≤ ρ, ρ > 0.
According to (4)–(11), the transformed open-loop

system without a stuck failure is constructed,⎧⎪⎨
⎪⎩

˙̃x(t) = Ax̃(t) + B̃ sat(v(t)) + B̃f ω̃(t),

ỹ(t) = Cx̃(t),

ė(t) = r̃ − ỹ(t)

(16)

Note that, according to (11), ỹ(t) = Cx̃(t) =

C
(
x(t) +A−1B α̃−β̃

2 ζ
)
= y(t)+CA−1B α̃−β̃

2 ζ . Thus,

define the reference for the system (16) as r̃ = r +

CA−1B α̃−β̃
2 ζ. Consider a state feedback controller

v(t) = Kx̃(t) +Kre(t), (17)

where K and Kr are pending controller matrices. Hence,
neglecting actuator saturation, the closed-loop system is
described as{

ξ̇(t) = (A+ BK)ξ(t) + Bf ω̃(t) +Hr̃,

ỹ(t) = Cξ(t), (18)

with an extended state vector ξ(t) = [x̃T (t) eT (t)]T ∈
R

n+p and the following matrices:

A =

[
A 0
−C 0

]
,

B =

[
B̃
0

]
= B̄

[
Im0×m0 0

0 diag[ε]

]
,

B̄ =

[
B
0

] [
α0+β0

2 0
0 Imf×mf

]
,

Bf =

[
B̃f

0

]
= B̄fdiag[ε],

B̄f =

[
Bf

0

]
, H =

[
0
I

]
,

C = [C 0] , K = [K Kr].
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In order to guarantee the stability of the closed-loop
system and prevent saturation of actuators, the following
theorem is proposed.

Theorem 3. Given η > 0, ρ > 0, if there exists a
symmetric positive-definite matrix W ∈ R

(n+p)×(n+p),
a matrix Y ∈ R

m×(n+p), a set of positive scales ε =
[εm0+1, εm0+1, . . . , εmf

], and a positive scale γ satisfy-
ing [

1 Yi

∗ W

]
≥ 0, i = 1, . . . ,m0, (19)

[
εj Yj

∗ W

]
≥ 0, j = m0 + 1, . . . ,mf , (20)

⎡
⎣ Q1 H −WCT

∗ −γρI I
∗ ∗ −I

⎤
⎦ < 0, (21)

where

Q1 = WAT +AW + Y T B̄T + B̄Y

+
1

η
B̄f

⎡
⎢⎣

εm0+1 0
. . .

0 εmf

⎤
⎥⎦ B̄T

f + ηW,

Yi and Yj represent the i-th and j-th rows of matrix
Y , respectively then the ellipsoid Ω(P ) = {ξ(t) ∈
R

(n+p)|ξT (t)Pξ(t) ≤ 1} is an invariant set and satis-
fies Ω(P ) ⊆ Ξ(K) with εi=

√
εi i = m0 + 1, . . . ,mf ,

P = W−1 and

K =

⎡
⎢⎢⎢⎢⎣

Im0×m0 0
1

εm0+1

. . .
0 1

εmf

⎤
⎥⎥⎥⎥⎦Y P.

In other words, the region Ω(P ) is the stability region of
the system (18) that guarantees the absence of actuator
saturation and tracking performance.

Proof. Considering a Lyapunov function of the system
(18), V (ξ(t)) = ξT (t)Pξ(t), according to Theorem 1, the
derivative satisfies

V̇ (ξ(t)) ≤
[

ξ(t)
r̃

]T [
Q2 PH
∗ 0

] [
ξ(t)
r̃

]
,

where

Q2 = ATP + PA+KTBTP + PBK
+

1

η
PBfBT

f P + ηP

Taking into account energy-to-energy performance
‖ė(t)‖2 = ‖r̃ − Cξ(t)‖2 ≤ γ̄‖r̃‖2, and matrices B̄ and

B̄f , the following relationship should be satisfied (Pascal
and Pierre, 1994):

⎡
⎣ Q3 PH −CT

∗ −γ̄2ρI I
∗ ∗ −I

⎤
⎦ < 0,

where

Q3 =ATP + PA+KT

[
Im0×m0 0

0 diag[ε]

]
B̄TP

+ P B̄
[

Im0×m0 0
0 diag[ε]

]
K

+
1

η
P B̄fdiag[ε]diag[ε]B̄T

f P + ηP.

Then (21) is achieved by pre- and post-multiplying
the inequality by

⎡
⎣ P−1 0 0

0 I 0
0 0 I

⎤
⎦ ,

and replacing P−1,

[
Im0×m0 0

0 diag[ε]

]
KP−1,

[ε2m0+1, ε
2
m0+2, . . . , ε

2
mf

] and γ̄2 by W , Y , ε = [εm0+1,

εm0+2, . . . , εmf
] and γ, respectively. Thus, Theorem 3 is

proved while the proof of (19) and (20) is the same as for
Theorem 2. �

In terms of the perspective of the task, the post-fault
system is expected to track the original reference.
However, the reachability of the original reference cannot
be guaranteed by the post-fault system because of the
existence of actuator constraints and actuator failures.
Thus, in order to guarantee system safety, it is significant
to evaluate the reference before controller switches. At
the same time, if the original reference is unreachable for
the post-fault system, a new optimal one will be required
to maintain admissible degradation performance or at last
keep system safety. Here, the optimal reference is defined
as the one which is closest to the original one under the
Euclidean distance and satisfies system constraints.

Considering the closed-loop system (18) and the
relationship between r and r̃, which is r̃ = r +

CA−1B α̃−β̃
2 ζ, system states in a steady case can be

calculated by the following equations for a specific
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set-point reference:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(∞) = (−C(A+ B̃0[Im0×m0 0]K)−1B̃0

[Im0×m0 0]Kr)
−1r̃

= (−C(A+ B̃0[Im0×m0 0]K)−1B̃0

[Im0×m0 0]Kr)
−1(r + CA−1B

α̃− β̃

2
ζ),

x̃(∞) = (A+ B̃0[Im0×m0 0]K)−1B̃0

[Im0×m0 0]Kre(∞),
(22)

where m0 is the number of fault-free actuators.
Then ξ(∞) = [x̃T (∞) eT (∞)]T is achieved and

ξ(∞) can be regarded as a function of r. According to the
condition

ξ(∞)TPξ(∞) ≤ 1,

the reachability of the original reference can be evaluated.
Obviously, if the above condition is satisfied,

state ξ(∞) will be inside the stability region Ω(P ).
Furthermore, x(∞) is inside its stability region so that
the reference is reachable. Hence, before controller
switches, the reachability of the original reference can be
evaluated. On the other hand, if reachability of the latter
is not met, the original reference may lead to a post-fault
system that is out of order. Hence a new reference,
rnew, is required. From the perspective of maintaining
admissible degradation performance, the new set-point
reference should be as close as possible to the original
one. Thus, the following theorem is proposed to find a
new reference.

Theorem 4. Given a positive definite diagonal matrix
N ∈ R

p×p and a positive scale ρ, if there exists a vector
rnew ∈ R

p and a positive scale λ satisfying

min
rnew

λ

[
λ (rnew − r)TN
∗ I

]
≥ 0, (23)

[
1 (Q(r + CA−1B α̃−β̃

2 ζ))T

∗ P−1

]
≥ 0, (24)

[
ρ rTnew
∗ I

]
≥ 0, (25)

rnew is achieved as the optimal new reference.

Proof. In order to reduce the difference between the
original reference r and the new one rnew, the value of
‖N(rnew − r)‖2 should be minimized, which is equivalent
to

min
rnew

λ

(rnew − r)TNTN(rnew − r) ≤ λ,

where N is a known matrix to adjust weights of different
elements in the new reference frame. The new element

with a higher weight is closer to the original one.
Considering the Schur complement, the inequality above
can be described as (23).

In order to guarantee that rnew is reachable by
the post-fault system, according to (22), the following
condition should be satisfied:

(r + CA−1B
α̃− β̃

2
ζ)TQTPQ(r + CA−1B

α̃− β̃

2
ζ)

≤ 1,

where

Q =

[
M(−CM)−1

(−CM)−1

]
,

M = (A+ B̃0[Im0×m0 0]K)−1B̃0[Im0×m0 0]Kr.

At the same time, rnew should meet reference
constraints such as rTnewrnew ≤ ρ.

Hence, according to the above two inequalities, (24)
and (25) are achieved respectively by considering the
Schur complement. �

4. Simulation samples

In order to illustrate the proposed approaches and present
simulation results more clearly, two numerical examples
are given. The first one shows a different stability region,
actuator outputs, and controller outputs between fault-free
and post-fault systems. The second example is used
for illustrating the set-point tracking approach against an
actuator stuck failure and constraints.

4.1. System stability of a fault-free and a post-fault
system. Consider the following unstable open-loop
system:

ẋ(t) =

[
1 −0.5
1 3

]
x(t) +

[
0 1
2 0

]
sat(u(t)). (26)

The actuator constraints are α = diag[2 1] and β =
diag[1 1]. For the fault-free condition, the controller K
and the related matrix P are calculated by Theorem 1 with
(15) being replaced by WAT +AW + Y T B̃ + B̃Y < 0.
According to (11), the center of Ωx(P ), which is also
the equilibrium point of the fault-free system, is x0 =
−A−1B α−β

2 ζ = [−0.1429 − 0.2857]. Simulation
results are shown in Fig. 3 by solid lines with initial states
x(0) = [−0.7 −0.5]. Figure 3(a) shows the state space of
x(t) with state trajectory and stability regions. The initial
states x(0) are marked by the small circle and the final
states are asymptotically converging to the star which is
also the center of the real-line ellipse. Figure 3(b) shows
actuator outputs of the system (26) and Fig. 3(c) shows the
control inputs of the system (13).
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Fig. 3. Simulation results of a fault-free and a post-fault system: state space with stability regions and state trajectories (a), actuator
outputs of the system (26) with the proposed controller (b), control inputs of the system (27) (c), ω̃(t) (d).

Assume the second actuator is stuck at ūf = 0.3 and
detected at tf = 0.8 s, and the FDI module is supposed
to provide fault information with no delay. As discussed
above, the proposed method is only interested in x(tf ),
which is marked by a triangle in Fig. 3(a). Without the
FTC approach, the post-fault system is out of order at last
as shown in Fig. 3 by dot-dashed lines.

In order to guarantee the stability of the post-fault
system, the controller should be redesigned. Taking into
account the proposed control framework, the actuator
stuck failure is redefined as constraints. Based on
Theorem 2, ε is calculated as 0.2060 with η = 1. Thus,
the new constraints achieved by (5) are α̃ = diag[2 ūf +

ε] = diag[2 0.5060] and β̃ = diag[1 − (ūf − ε)] =
diag[1 − 0.0940]. Then, based on (4)–(11), the system
can be rewritten as

˙̃x(t) =

[
1 −0.5
1 3

]
x̃(t)

+

[
0 0.2060

3.00 0

]
sat(v(t)) +

[
0.2060

0

]
ω̃(t).

(27)
According to Theorem 1 with η = 1, the controller for

post-fault system Kf and the related matrix Pf can be
computed directly. The center of Ωx(Pf ), which is also
the equilibrium point of the post-fault system, is x0 =
[−0.4 − 0.2]. Simulation results are shown in Fig. 3 by
dashed lines.

Clearly, as shown in Fig. 3(a), the states when the
stuck failure is detected and isolated, x(tf ) (marked
by the triangle), are inside the stability region of the
post-fault system Ωx(Pf ) (the dashed ellipse), x(tf ) ∈
Ωx(Pf ), which represents the stuck failure, is able to be
compensated by the redesigned new controller. This result

can also be achieved by [x(tf )+A−1B α̃−β̃
2 ζ]′Pf [x(tf )+

A−1B α̃−β̃
2 ζ] = 0.4338 < 1.

Finally, the states are asymptotically convering to the
star, which is also the center of the dashed-line ellipse. As
shown in Fig. 3(b), the second actuator of the real system
is stuck at ūf = 0.3. Thus, the number of the available
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Fig. 4. Simulation results of a fault-free system and a post-fault system without the proposed control framework for set-point tracking:
actuator outputs of the system (28) (a), outputs of the system (28) (b).

control inputs is only one. At the same time, as shown in
Fig. 3(c), all control inputs of system (13) are fault-free,
which represents the fact that the number of available
control inputs is not affected by a stuck failure. Finally,
the normalized disturbance produced by (4) is shown in
Fig. 3(d).

4.2. Set-point tracking of a fault-free and a post-fault
system. Consider the following open-loop unstable
system:

ẋ(t) =

⎡
⎣1.5 −0.5 0.8

1 3 1.5
0.2 −1.3 0.2

⎤
⎦x(t)

+

⎡
⎣1 1 0
2 0 3
0 1 2

⎤
⎦ sat(u(t))

y(t) =

[
0 1 0
0 0 1

]
x(t).

(28)

The actuator constraints are α = diag[1 0.1 0.1],
β = diag[0.1 0.3 0.2], and the reference constraints
ρ = 1. For the fault-free condition simulation results
are shown in Fig. 4 by solid lines with the initial states
x(0) = [−1.4 − 0.2 0.9] and r = [−0.28 0.87].
Figure 4(a) shows actuator outputs of the system (28), and
Fig. 4(b) shows the outputs of system (28).

Assume that the third actuator is stuck at ūf = −0.07
and detected at tf = 15 s in the absence of FDI delays.
With a fault-free controller, the post-fault system is out of
order at last, as shown in Fig. 4 by dot-dashed lines.

In order to guarantee the stability of the post-fault
system, the controller should be reconfigured. Taking
into account the proposed control framework, the actuator
stuck failure is redefined as constraints. Based on
Theorem 3 under η = 1, matrix Pf and ε related to

controller Kf can be achieved. The new constraints are
α̃ = diag[1 0.1 −0.0177] and β̃ = diag[0.1 0.3 0.1223],
with ε = 0.0523. Then, the state equation of the system
(28) can be rewritten as

˙̃x(t) =

⎡
⎣ 1.5 −0.5 0.8

1 3 1.5
0.2 −1.3 0.2

⎤
⎦ x̃(t) +

⎡
⎣ 0

0.1568
0.1046

⎤
⎦ ω̃(t)

+

⎡
⎣ 1.6500 0.2000 0

1.1000 0 0.1568
0 0.2000 0.1046

⎤
⎦ sat(v(t)). (29)

Figure 5(a) shows the state space of x(t) with
stability regions and state trajectories. Note that the
closed-loop system has n + p = 5 dimensions but
Fig. 5(a) just shows the state space of x(t) which has
3 dimensions. Obviously, the ellipsoid of x(t) ∈ R

n

is a subset of the ellipsoid of ξ(t) ∈ R
n+p because of

ξ(t) = [x̃T (t) e(t)]T . Thus, the ellipsoid of x(t) can be
graphed according to the following relationship:

ξT (t)Pf ξ(t)

=

[
x̃(t)
e(t)

]T [
Pf11 Pf12

PT
f12 Pf22

] [
x̃(t)
e(t)

]
= (x̃(t)− x̃0(t))

TPf11(x̃(t)− x̃0(t))

+ eT (t)[Pf22 − PT
f12P

−1
f11Pf12]e(t) ≤ 1,

where Pf11 ∈ R
n×n, Pf22 ∈ R

p×p and x̃0(t) =
−P−1

f11Pf12e(t). Furthermore, considering x̃(t) = x(t) +

A−1B α̃−β̃
2 ζ, the ellipsoid of x(t) can be achieved

according to Pf . The center and radius are influenced by

e(t) and A−1B α̃−β̃
2 ζ. In Fig. 5(a), the stability regions

of x(t) at instant tf are shown, where the fault-free
system with P is represented by the lower ellipsoid and
the post-fault system with Pf is represented by the upper
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Fig. 5. Simulation results of a fault-free and a post-fault system for set-point tracking: state space with stability regions and state
trajectories (a), actuator outputs of the system (28) (b), control inputs of the system (29) (c), outputs of the system (28) (d).

ellipsoid. The initial states x(0) are marked by the small
circle and the states x(tf ) by the triangle. As shown in
Fig. 5(a), the states x(tf ) are inside the stability region
of the post-fault system Ωx(Pf ), which implies that the
stuck failure is able to be compensated by the redesigned
new controller.

Figure 5(b) shows actuator outputs of the system
(28), where the third actuator is stuck at ūf = −0.07.
Figure 5(c) shows the control inputs of the system
(16) and, finally, Fig. 5(d) shows the outputs of the
system (28). Clearly, the post-fault system with only
fault-tolerant controller K (dot lines) is stable at last, but
the post-fault system cannot track the original set-point
reference, as shown in Fig. 5(d). In other words, the
original reference is unreachable because the second
actuator has been saturated, as shown in Fig. 5(b). This
conclusion can also be made by ξ(∞)TPfξ(∞) =
24.8452 > 1. Thus, reference redesign is required to

compute a new reference.
According to Theorem 4, a new reference is

calculated as r = [−0.2165 0.9106] and related
simulation results are shown in Fig. 5 by dashed lines. As
shown in Fig. 5(d), the post-fault system can track the new
set-point, and the related control inputs of the controller
(17), shown in Fig. 5(b), are not saturated.

5. Conclusions

In this paper, actuator stuck failures and actuator
constraints were simultaneously considered. For keeping
post-fault system safety under actuator constraints, a
control framework was developed which involves FTC,
reference redesign and system performance evaluation.

Actuator stuck failures were firstly redefined as
actuator constraints so that stuck failures and constraints
could be unified. A new fault-free system with
new constraints was constructed and used to design a



760 X. Qi et al.

state-feedback controller to guarantee regional stability
of the original post-fault system. Based on the achieved
stability region, stuck compensability and reference
reachability were analyzed before controller switches
to prevent the system from being dangerous. If the
original reference were unreachable, the framework
would compute a new optimal one instead. Finally, the
potential and performance of the proposed method were
validated by numerical examples.

In future works, we will focus on improving the
universality of the proposed unifying method and research
on dynamic reference tracking, etc.
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