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Finding clusters in high dimensional data is a challenging research problem. Subspace clustering algorithms aim to find
clusters in all possible subspaces of the dataset, where a subspace is a subset of dimensions of the data. But the exponential
increase in the number of subspaces with the dimensionality of data renders most of the algorithms inefficient as well
as ineffective. Moreover, these algorithms have ingrained data dependency in the clustering process, which means that
parallelization becomes difficult and inefficient. SUBSCALE is a recent subspace clustering algorithm which is scalable
with the dimensions and contains independent processing steps which can be exploited through parallelism. In this paper,
we aim to leverage the computational power of widely available multi-core processors to improve the runtime performance
of the SUBSCALE algorithm. The experimental evaluation shows linear speedup. Moreover, we develop an approach using
graphics processing units (GPUs) for fine-grained data parallelism to accelerate the computation further. First tests of the
GPU implementation show very promising results.
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1. Introduction

The unprecendented growth in the size and dimensions
of data has set new challenges for data mining research
(Fan et al., 2014). Clustering is a data mining process
of grouping similar data points into clusters without
prior knowledge of the underlying data distribution.
Due to the curse of dimensionality, data points lose
contrast in high-dimensional space, making it difficult
to cluster data based on similarity measures (Steinbach
et al., 2004; Aggarwal and Reddy, 2013). Traditional
clustering algorithms like k-means (MacQueen, 1967) and
DBSCAN (Ester et al., 1996) fail to find meaningful
clusters in high-dimensional data.

Different combinations of data dimensions reveal
different groupings among the data. These possible
subsets of dimensions of the data are called subspaces.
Subspace clustering algorithms attempt to find clusters in
all possible subsets of data dimensions (Parsons et al.,
2004; Aggarwal and Reddy, 2013).
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The area of subspace clustering is of critical
importance in diverse applications (Li et al., 2004; Jun
et al., 2006; Tierney et al., 2014). However, with the
increase in data dimensions, the number of subspaces
increases exponentially, which makes the subspace
clustering process computationally very expensive. With
the wide availability of multi-core processors and the
spread of many-core co-processors such as GPUs,
parallelization seems to be an obvious choice to reduce
computation time.

Most of subspace clustering algorithms are
inefficient for high-dimensional data because they
use enumeration of data points and compute redundant
clusters during the clustering process. SUBSCALE (Kaur
and Datta, 2015) is a recent subspace clustering algorithm
which can deal efficiently with the exponential search
space of high-dimensional data without enumerating data
points or generating trivial clusters.

The core of the SUBSCALE algorithm resides on
generation of 1-dimensional combinatorial units of dense
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points and combining them to form non-trivial subspace
clusters. Although SUBSCALE scales well with the
dimensions and performs faster than other subspace
clustering algorithms, it is still computationally intensive
due to the generation of combinatorial dense units from
data. The computing time can be further reduced by
parallelizing the computation of these dense units.

In this paper, which is an extended version of
our earlier work (Datta et al., 2017), we aim to
parallelize the SUBSCALE algorithm in two ways and
investigate the runtime performances. First, we exploit
current multi-core architectures with up to 48 processing
cores using the OpenMP framework. The experimental
evaluation demonstrates a speedup of up to a factor of 27.
Compared with the original SUBSCALE algorithm, this
modified parallel algorithm is faster and more scalable for
high-dimensional data sets.

Second, we use many-core graphics processing units
(GPUs) to exploit data parallelism on a fine-granular
level, with a significant speedup, especially for large-scale
computations. We also describe an efficient combinatorial
solution to the problem of assigning tasks to threads. This
work is ongoing and results are expected to improve with
further optimizations in its implementation.

In the next section, we discuss the related
literature. Section 3 explains subspace clustering and the
SUBSCALE algorithm we parallelize. In Section 4, we
describe our multi-core parallelization and analyze the
performance of the parallel implementation. Section 5
describes our current work on massive parallelization
using GPUs with preliminary results, before the paper is
concluded in Section 6.

2. Related work

The clustering problem has been studied extensively
in different disciplines, including statistics (Fukunaga,
1990), image processing (Elhamifar and Vidal, 2013),
bioinformatics (Thalamuthu et al., 2006) and data mining
(Han et al., 2011). In fact, a search for ‘data clustering’
on Google Scholar (Google Scholar, 2018) found more
than 3.5 million entries in 2018. Despite the ubiquitous
importance of clustering, we are still far from those
perfect clustering algorithms that can work with the
high-dimensional data being produced these days.

There are a number of surveys available on clustering
algorithms along the time-line of their development in
history (Murtagh, 1983; Jain and Dubes, 1988; Jain
et al., 1999; Xu and Wunsch, 2005; Parsons et al., 2004;
Berkhin, 2006; Kriegel et al., 2009; Sim et al., 2013;
Aggarwal and Reddy, 2013; Xu and Tian, 2015). The
clustering algorithms which are time tested and known
to perform very well for low-dimensional data are not
suitable for high-dimensional data due to the curse of
dimensionality.

There have been efforts to reduce the data
dimensionality by transforming them to new lower
dimensions (Joliffe, 2002), but it is difficult to interpret
the clusters found in the new dimensions in relation
to the original data space. Also, these methods fail
to capture the local relevance and groupings among
the data. Another approach found in the literature for
clustering is to use selective dimensions and numbers of
clusters (Aggarwal et al., 1999), but these algorithms are
essentially data partitioning techniques and do not find all
natural groupings of data.

Due to the curse of dimensionality, data group
together differently under different subsets of dimensions,
and this premise has opened the challenging domain of
subspace clustering for data mining researchers (Agrawal
et al., 1998; Parsons et al., 2004; Kailing et al., 2004; Sim
et al., 2013; Xu and Tian, 2015). Subspace clustering
algorithms aim to find all possible clusters in all possible
subspaces of the data without any prior knowledge of the
underlying data distribution.

CLIQUE (Agrawal et al., 1998) is a famous subspace
clustering algorithm which finds lower-dimensional
candidate clusters through a fixed-size grid and then
combines them together iteratively for computing higher
dimensional clusters. There are many variations of this
algorithm, for example, using entropy (Cheng et al., 1999)
and an adaptive grid (Nagesh et al., 2001).

The increase in the dimensions of data impedes the
performance of clustering algorithms. The exponential
search space and the presence of redundant clusters in
the subspace hierarchy of high-dimensional data add to
the computational inefficiency. However, the detection
of trivial clusters and an excessive number of database
scans during the clustering process is inbuilt in most
of subspace clustering algorithms. Moreover, most of
the subspace clustering algorithms do not have obvious
parallel structures, which hinders any attempt to use
parallel computation for further optimization of efficiency
(Zhu et al., 2015). This is partially due to the data
dependency during the processing sequence of cluster
generation.

SUBSCALE (Kaur and Data, 2015; 2014) is a
recent subspace clustering algorithm which requires only
k database scans to process a k-dimensional dataset. Also,
this algorithm is scalable with the number of dimensions
and its structure contains the computation of independent
tasks which can be parallelized.

In the next sections, we briefly discuss the
SUBSCALE algorithm and our modifications for
multi-core and many-core parallel implementations.

3. Subspace clustering

This section provides the basics and definitions
of subspace clustering and a brief description of
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SUBSCALE (Kaur and Datta, 2015), the algorithm which
we aim to make more efficient through parallelization.

Given an n × k set of data points, a point Pi is a
k-dimensional vector {P 1

i , P
2
i , . . . , P

k
i }, where P d

i is the
projection of a point Pi on the d-th dimension. A sub-
space is a subset of k dimensions. A data point from
a k-dimensional subspace can be projected on up to 2k

subspaces.
A subspace cluster, Ci : (P, S), is a set P of points,

such that the projections of these points in a subspace S
are dense. According to the Apriori principle (Agrawal
et al., 1998), a dense set of points in a subspace S of
dimensionality d is dense in all of 2d projections of S.
Therefore, it is sufficient to find a cluster in its maximal
subspace.

A cluster Ci : (P, S) is called a maximal subspace
cluster if there is no other cluster Cj : (P, S′) such
that S′ is a superset of subspace S. The projections
of Ci in all lower-dimensional subsets of S will be
trivial clusters and will not add to the information that
is already in cluster Ci. The SUBSCALE algorithm
finds such maximal subspace clusters by combining dense
points from single dimensions and without computing the
redundant non-maximal clusters.

3.1. SUBSCALE algorithm. The main idea behind
SUBSCALE is to find the dense sets of points (also called
density chunks) in each single dimension. The algorithm
then generates the relevant signatures from these density
chunks. The signatures are collided with each other in a
hash table (hTable, explained later) to directly compute
the maximal subspace clusters.

3.1.1. Density chunks. Based on two user defined
parameters ε and τ , a data point is dense if it has at least τ
points within ε-distance. The neighbourhood N(Pi) of a
point Pi in a particular dimension d is the set of all points
Pj such that Lp(P

d
i , P

d
j ) < ε, Pi �= Pj .

A density chunk is a set of one or more dense
points such that each point is within ε-distance from any
other point in the chunk. Figure 1 shows an example
of computing density chunks with τ = 3 from sorted
data points: {P1, P7, P3, P12, P5, P4, P9, P2, P6, . . . } in
a particular dimension.

P1, P7, P3, P12, P5, P4, P9, P2, P6, ...

ch1

ch2

ch3

 

Fig. 1. Computation of density chunks.

The smallest possible dense set of points, called a
dense unit, is of size τ + 1. A density chunk of size t has(

t
τ+1

)
possible combinations to form dense units.

Computing density chunks. We notice in Fig. 1 that
consecutive density chunks may overlap, i.e., they have
common points. Density chunk ch2 will not generate
any further dense units than those already computed from
chunk ch1. Thus, a density chunk can be eliminated if
its last element is the same as that of the previous chunk.
Also,

(
5
4

)
= 5 combinations of points from chunk ch3

would have already been generated by ch1.
To eliminate the redundant dense unit computations

due to overlapping density chunks, we can use a special
marker in each density chunk called pivot, which is the
position of the last element of the previous chunk in the
current density chunk. In Fig. 1, the pivot is the last
point in ch2 and the fifth data point in ch3. Instead of
computing

(
7
4

)
= 35 combinations from ch3, we can

create partial combinations from two partitions of ch3,
as shown in Fig. 2. However, all the combinations from
a density chunk must be computed when pivot ≤ τ .
The pivot based approach results in considerable savings
in computational time and efficiency for larger density
chunks with lots of overlapping points.

After computing the dense units, the next step is
to find which of these units contain projections of the
higher dimensional maximal subspace clusters. Without
any prior information of the underlying data distribution,
it is not possible to know the promising dense units in
advance. The only viable solution is to check which of the
dense units from different dimensions contain identical
points, which is done using signatures.

 

P1, P7, P3, P12, P5, P4, P9, P2, P6

pivot: 5

ch1
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P3, P12, P5, P4, P9  P2, P6
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ch32 

Fig. 2. Optimizing the computation of density chunks; |ch31|
and |ch32| are the sizes of chunks ch31 and ch32, re-
spectively.
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3.1.2. Signatures. SUBSCALE proposed a novel way
to match the dense units by assigning signatures to them.
To create signatures, each of the n data points is mapped
to a random, unique and large integer key. The sum of the
mapped keys of data points in each dense unit creates a
signature for this dense unit. Sigdm denotes the signature
of dense unit m in dimension d.

According to two observations in the SUBSCALE
paper (Kaur and Datta, 2014), two dense units with
equal signatures would have identical points in them
with extremely high probability. Thus, collisions of a
signature across dimensions dr, . . . , ds imply that the
corresponding dense unit exists in the maximal subspace
S = {dr, . . . , ds}. We refer our readers to the extended
version of the original paper (Kaur and Datta, 2015) for a
detailed explanation.

Each single dimension may have zero or more
density chunks, which in turn generate a different number
of signatures in each dimension. Some of these signatures
will collide with the signatures from other dimensions
to give a set of dense points in the maximal subspace.
If Sigjm collides with another signature Sigkn then the
corresponding dense units are the same (with very high
probability) and exist in subspace {j, k}.

3.1.3. Hash table. SUBSCALE uses a hash table data
structure hTable to store collision information about each
signature Sig (Fig. 3). An hTable has a number of slots
and each slot can store one or more signatures.

When a signature Sig is generated in a dimension
d, it is mapped to a slot in hTable. Identical signatures
should collide in the same slot and only one of them is
stored, as they contain the same points. Information about
the dimensions from which the signatures were generated
is also stored alongside the signature in the slot.

Matching items by hash collisions is also used in
relational hash joins. However, our approach is not based
on relational databases. There is no distinction between
small and big relations or between a partitioning/build
phase and a probe phase in our work. Most importantly,
our approach “joins” up to thousands of dimensions.

Here numSlots is the number of slots in a hash table
which can vary depending upon the implementation. In
this paper, we used modulo numSlots for the mapping
of signatures to a slot (Fig. 4). If a slot already contains a
signature Sig′ such that Sig = Sig′, then d is appended
to the dimension-list attached to Sig.

In order to identify all signature collisions, a
sufficiently large hTable is required to hold them in the
working memory of the system. If numSigd is the
total number of signatures in dimension d, then the total
number of signatures in a k-dimensional data set will be
totalSig =

∑k
d=1 numSigd. As each dense unit contains

τ + 1 data points and the signature equals the sum of

mapped keys, the value of a signature will always lie
within range R = [(τ + 1) · minK , (τ + 1) · maxK ],
where minK and maxK are the smallest and the largest
keys, respectively.

If memory is not a constraint, a hash table with
|R| slots can easily accommodate totalSig, as typically,
totalSig � R. Since memory is a constraint, the range
R can be split into multiple slices and only the signatures
whose values fit within a slice are hashed and the rest are
discarded in each iteration. Another tweak to this could be
to abandon the signature generation process from a dense
unit, as soon as the mapped key or the sum of mapped keys
exceeds the upper boundary of its slice. This way, each
slice can be processed independently using a separate and
a smaller hash table.

The computations for each slice is not dependent on
other slices. The split factor called sp determines the
number of splits of R, and its value can be set according
to the available working memory.

Also, the cluster quality is not affected by splitting
of hash table computations. The clusters are formed by
combining the dense units in each maximal subspace.
The total number of dense units is decided by the
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Fig. 3. Hash table data structure hTable in SUBSCALE to store

signatures and their associated data from multiple di-
mensions.
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Fig. 4. Using slots in hTable. numSlots is the total number
of slots available in hTable. Each slot may receive 0 or
more signature nodes through the modulo function on
the signature value.
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density chunks created through ε-neighbourhoods in
single dimensions.

As long as all dense units are processed, the same
clusters will be generated through sequential or parallel
methods. The computations of dense units in each single
dimension as well as each single slice can be processed
independent of others.

In the next section, we endeavour to use this
independence among dense units to reduce the execution
time for the SUBSCALE algorithm with multiple cores.

4. Multi-core parallelization using OpenMP

OpenMP is a set of compiler directives and callable
runtime library routines to facilitate shared-memory
parallelism (Dagum and Menon, 1998). We used the
OpenMP platform with C to parallelize SUBSCALE.

4.1. Processing dimensions in parallel. The
generation of signatures from the density chunks in each
single dimension is independent of other dimensions.
Thus, the dimensions can be divided among the available
processing cores to be run in parallel using threads
(Fig. 5). The hash table hTable is shared among
threads. The modified SUBSCALE algorithm to process
the dimensions in parallel is given in Algorithm 1.

However, the problem of thread contention arises
when multiple threads try to get mutually exclusive access
of the same slot of hTable to update or store the signature
information. Without mutual exclusion, two threads
with the same signatures generated from two different
dimensions would overwrite the same slot of hTable.
The overwriting would lead to loss of information on the
maximal subspace related to this signature. The maximal
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Fig. 5. Parallel processing of the SUBSCALE algorithm. Each
dimension is allocated a separate thread and each thread
computes the density chunks and its signatures indepen-
dent of the others.

Algorithm 1. Modified SUBSCALE algorithm to execute
multiple dimensions on multiple cores and with a shared
hash table.
Require: DB : n× k data, K: set of n keys

1: Initialize a common hash table hTable
2: Start threads with shared DB, hTable and K . Share

the outer for loop among threads
3: for dimension j ← 1 to k do
4: Scan {P j

1 , P
j
2 , . . . , P

j
n} and find density chunks

5: for each density chunk do
6: Create signatures and hash them to hTable in a

mutually exclusive manner
7: end for
8: end for
9: Synchronization barrier for threads

10: Collect all collisions from hTable to output maximal
dense units

11: return Dense points in maximal subspaces

subspace of a dense unit can only be found by knowing
the underlying dimensions generating its signature.

The number of signatures being mapped to the same
slot depends on their sum value, numSlots in the hTable
and the hashing function (modulo in this paper). A
smaller hash table would lead to frequent requests for
exclusive access to the same slot from different threads.
It can be argued that a bigger hash table would result
in a decrease in thread contention, but the allowed total
size of a hash table depends on the available working
memory. OpenMP provides a lock mechanism for the
shared variables, and the number of locks to be maintained
grow proportional to the slots in the hash table, so their
synchronization adds to the overhead as well. We discuss
the results of this approach in Section 4.3.

4.2. Processing slices in parallel. The other approach
to avoid thread contention is to utilize the splitting of
the range R of expected signature values, as described in
Section 3.1.3. The slices created through the splitting can
be processed in parallel as each slice generates signatures
from a different range compared to other slices. Each slice
requires a separate hash table. The modified SUBSCALE
algorithm to process the slices in parallel is given in
Algorithm 2.

Though this approach helps to achieve faster
clustering performance of SUBSCALE, the memory
required to store all of the hash tables can still be a
constraint.

Since R denotes the whole range of computation
sums that are expected during the signature generation
process, we can bring these slices into the main working
memory one by one. Each slice is again split into
sub-slices to be processed with multiple threads. The
total number of signatures can be pre-calculated from the
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Algorithm 2. Modified SUBSCALE algorithm to execute
multiple slices on multiple cores and separate hTable.
Require: DB : n × k data, K: set of n keys, SP: split

factor
1: R← (max(K)−min(K))× (τ + 1)
2: SLICE = R/SP
3: Start threads with shared DB and K . Share the outer

for loop among threads
4: for split← 0 to SP − 1 do
5: Initialize a new hTable
6: LOW = min(K)× (τ + 1) + split× SLICE
7: HIGH = LOW + SLICE
8: for dimension j ← 1 to k do
9: Scan {P j

1 , P
j
2 , . . . , P

j
n} and find density chunks

10: for each density chunk do
11: create signatures and hash them to hTable if

they fall between LOW and HIGH
12: end for
13: end for
14: Collect all collisions from hTable to output

maximal dense units
15: Discard hTable
16: end for
17: return Dense points in maximal subspaces

density chunks in all dimensions. The results and their
evaluation are discussed in the next section.

4.3. Results and analysis. The experiments were
carried out on an IBM Softlayer Server Quad Intel Xeon
E7-4850, 2 GHz, with 48 cores, 128 GB RAM and
Ubuntu 15.04. Hyper-threading was disabled on the server
so that each thread could run on a separate physical
core and parallel performance could be measured fairly.
The parallel version of the SUBSCALE algorithm was
implemented in C using OpenMP directives. Also, we
used 14-digit non-negative integers for the key database.

We used publicly available madelon (4400×500) and
pedestrian (3661 × 6144) datasets (Geiger et al., 2013;
Zhu et al., 2013; Lichman, 2013). These datasets were
also used by the authors of the SUBSCALE algorithm.

4.3.1. Multiple cores for dimensions. We used the
madelon data set with ε = 0.000001, τ = 3 and
experimented with three different number of slots in the
shared hTable: 0.1 million, 0.5 million and 1 million.

Figure 6 shows the runtime performance of the
madelon data set by using multiple threads for
dimensions. We observe that performance improves
slightly by processing dimensions in parallel but, as
discussed before, thread contention due to mutually
exclusive access to the same slot in the shared hash table
results in performance degradation.

4.3.2. Multiple cores for slices. To avoid this memory
contention due to shared hTable, we split the hash table
computations into slices according to the SUBSCALE
algorithm and distribute these slices among multiple
cores.

Figure 7 shows the results of runtime versus number
of threads used for processing the slices of the madelon
dataset. The hash computation was sliced with different
values of split factor sp ranging between 200 and 2000.
We can see the performance boost by using more threads.
The speedup is shown in Fig. 8, and becomes linear as the
number of slices increases. The speedup is the time ratio
between sequential algorithm and using multi-threading.

4.3.3. Scalability with dimensions. The 6144
dimensional pedestrian dataset is used to study the
speedup with the increase in dimensions. With ε =
0.000001 and τ = 3, a total of 19860542724 signatures
are expected, which would require ∼ 592 GB of working
memory to store the hash tables.

To overcome this huge memory requirement, we can
split these signature computations twice. We used a split
factor of 60 to bring down the memory requirement for
total hash tables. Each of these 60 slices was further split
into 200 sub-slices to be run on 48 cores. The number of
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Fig. 6. Multiple cores for dimensions: runtime performance
versus the number of threads for the madelon dataset
(ε = 0.000001 and τ = 3). The total dimensions are
divided among available cores using threads. Due to
thread contention, the runtime fails to improve.
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Fig. 7. Multiple cores for slices: runtime performance versus
the number of threads for the madelon dataset (ε =
0.000001 and τ = 3). The slices of hash computa-
tion (sp denotes the split factor) are distributed among
multiple cores and runtime improves with the number of
threads.
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slots in each hTable is fixed as total signatures/sp.
The execution time decreases drastically with an

increase in the number of threads. It took around 26
hours to finish processing all of the 60 × 200 slices. The
sequential version of SUBSCALE takes ∼ 720 hours.

5. Fine-grained parallelization using GPUs

In this section, we describe an alternative approach of
parallelization with a much finer-grained task structure.
The approach is suitable for parallelization on graphics
processing units (GPUs). This work is ongoing and the
results are preliminary.

5.1. Level of granularity. Recall that the main
workload of the computation in SUBSCALE is the
generation and hashing of signatures for the extremely
large number of dense units that may occur in a single
dimension. For each density chunk, the computation
consists in generating the signatures of all dense units, i.e.,
all possible combinations of τ+1 elements, in that chunk.
Since a density chunk of t elements consists of

(
t

τ+1

)

dense units, we get a combinatorial explosion for larger t,
resulting in a huge number of small and almost identical
tasks, independent of each other. Signature computation
only requires read access to the points in the respective
dense unit. So, even for non-disjoint dense units, a parallel
computation will not create any thread conflicts.

Furthermore, since all the dense units of the same
dimension result in different signatures (with very high
probability; cf. Section 3.1.2), it is very unlikely that hash
collisions will happen during the parallel computation
within one dimension. Hence, one notable advantage
of this task structure is that, if different dimensions are
processed sequentially, there will be no thread contention
for accessing the hash table. (Note, however, that this does
not preclude parallel computation of dimensions.)

1 4 8 16 32 48No. of threads
0
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S
p
e
e
d
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sp= 200
sp= 500
sp= 100
sp= 1500
sp= 2000

Fig. 8. Speedup versus the number of slices: speedup for the
results presented in Fig. 7. As the number of slices in-
creases, so does the efficiency gain from multi-core ar-
chitectures. With sp = 200, the number of slices per
core can vary from 200 to 4, depending upon the num-
ber of threads.

5.2. Parallel task structure. In this fine-grained
approach, a task consists of computing the signature value
for one single dense unit and hashing it. All such tasks
can be executed in parallel. Algorithm 3 can be used as
a parallel implementation of line 6 in Algorithm 1, or of
line 11 in Algorithm 2.

Algorithm 3. Parallel computation of signatures for all
dense units in a density chunk. DUi denotes the key of
the i-th point in dense unit DU .
Require: DC: density chunk of keys in dimension d,

hTable: common hash table (or hash table slice)
1: for each dense unit DU ⊆ DC in parallel do
2: signature← 0
3: for i← 0 to τ do
4: signature← signature+DUi

5: Hash signature to hTable
6: end for
7: end for

As τ is constant within one execution of the
algorithm and since there are no branches, all tasks
execute the same sequence of instructions, but on different
data. This type of data parallelism is well suited for
implementation using GPUs.

We have developed an implementation using
Nvidia’s CUDA architecture and programming model
(Nvidia CUDA, 2018). This model enables data
parallelism by allowing scalable grids of threads,
depending on the size of the data, to be processed. Each
thread is identified by its ID and can use this ID, for
example, to determine memory locations for reading input
and writing output data. In our case, an ID is required to
identify the dense unit to process.

5.3. Computing subsets efficiently. Algorithm 3
presupposes that each task knows how to retrieve its dense
unit DU , which is a subset {Pi0 , . . . , Piτ } of projected
points whose signature it computes. In a sequential
scenario, this is not a problem, as the subsets of size τ +1
can be enumerated one after another, using an ordering
in which it is computationally cheap to advance to the
lexicographically next subset from a given one (Loughry
et al., 2000).

In our parallel scenario, however, each thread needs
to identify its relevant subset independently, without
referring other results. More precisely, a thread with ID
i must find the i-th subset without accessing the (i− 1)-th
or any other previous subset. The parallel computation of
all subsets of size τ +1 of a given set is significantly more
complex than advancing to the next subset from a given
one. We outline two ways to solve this problem.
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5.3.1. Precomputing bit representations. One
solution for enabling data-parallel processing of dense
units—used in our initial implementation—is a small
sequential precomputation step populating an array with
the lexicographic enumeration of all

(
t

τ+1

)
dense units

within a density chunk of size t, i.e., the i-th position of
the array contains a representation of the i-th dense unit.
A straightforward encoding of subsets of size τ + 1 of a
set with t elements is a bit string of length t with exactly
τ + 1 bits set to 1. While the precomputation of the
array is sequential, it uses a very efficient implementation
for computing the lexicographically next bit permutation
(Anderson, 2018).

Precomputing the dense unit array of length
∼ 500000 for a density chunk of size t = 60 and dense
units of size τ + 1 = 4 takes about 12 ms on an Intel
Core i7-4720 HQ @2.6 GHz. Computing an array of∼ 50
million permutations (t = 60, τ + 1 = 6) takes 1252 ms.
A parallelization of this precomputation may be possible,
similarly to the idea of parallel prefix (Harris et al., 2007).

In order to calculate the signatures for a dense unit,
each thread i uses the i-th bit string in the precomputed
array as a bit mask for choosing the appropriate keys from
the density chunk and sums them up. One downside of
this approach is that for large density chunks, both the
number of bit strings and their length get large, requiring
considerable extra space.

5.3.2. Combinatorial decomposition. The combi-
natorial representation (or combinadics) of a non-negative
integer i allows a direct computation of the i-th subset of
size k of a given set (McCaffrey, 2004). It exploits the fact
that any integer i can be represented as a unique sum of k
binomial coefficients. More precisely,

∀i ≥ 0, k ≥ 1 ∃0 ≤ n1 < · · · < nk :

i =

k∑

j=1

(
nj

j

)
.

For example, if k = 4, we have

i = 6 =

(
0

1

)
+

(
1

2

)
+

(
3

3

)
+

(
5

4

)

= 0+ 0 + 1 + 5,

i = 20 =

(
0

1

)
+

(
2

2

)
+

(
4

3

)
+

(
6

4

)

= 0+ 1 + 4 + 15,

i = 99 =

(
3

1

)
+

(
4

2

)
+

(
6

3

)
+

(
8

4

)

= 3+ 6 + 20 + 70.

The numbers in the upper parts of the binomial
coefficients correspond to the elements contained in the

i-th subset of size k (in lexicographical order). Using the
above examples as an illustration, the 6th subset of size 4
of the set of natural numbers would be {0, 1, 3, 5}, while
the 20th subset would be {0, 2, 4, 6} and the 99th subset
would be {3, 4, 6, 8}.

A simple greedy algorithm can be used to compute
the combinatorial decomposition of i, and hence the
i-th subset (McCaffrey, 2004). From a complexity
point of view, this involves O(τ × log t) calculations of
binomial coefficients, each with cost O(τ). Since the
same binomial coefficients are computed repetitively, it
makes sense to trade off some extra memory, providing
a table of pre-calculated binomial coefficients in order to
improve efficiency. For typical sizes of t and τ , the table
of required binomial coefficients can be pre-calculated
within some microseconds and stored in the GPU’s
read-only cache (also known as constant memory) for fast
access by all threads. If for some large density chunk the
table might not be sufficient, the relevant coefficients can
always be calculated on demand.

5.4. GPU-based hashing. Hashing the calculated
signatures into htable can also be carried out on the
GPU. GPU-based hashing has been extensively studied
by Alcantara, who proposed several efficient hashing
schemes (Alcantara, 2011).

Our approach, based on the work by Strohm et al.
(2015), is currently being implemented, and hence is
not part of the evaluation presented here. Note that the
GPU memory is a limiting factor for the hash table size.
State-of-the-art GPUs are configured with up to 16 GB
of RAM, which is sufficient to accommodate each partial
table of the slicing approach described in Section 4.2.

5.5. Performance evaluation. Our current implemen-
tation of the GPU approach is a first step. It has not
been optimized regarding the CUDA memory hierarchy,
and hence it does not benefit from caching effects.
Also, currently it does not use more intricate CUDA
functions, for instance, the SHFL (shuffle) command,
which might be interesting for combinatoric tasks like
subset enumeration.

The performance of the GPU algorithm was tested on
an Intel Core i7-4720HQ @ 2.6 GHz machine equipped
with an Nvidia GeForce GTX 950M GPU hosting 640
processing units (CUDA cores) and 4 GB of GPU RAM,
against the sequential CPU algorithm for computing
signatures, run on the same machine.

They are shown in Table 1. The results do not include
the time spent on pre-computation of subsets and on the
hashing of signatures, but they cover all transfer times
between GPU and host memory required for the GPU
computations. For smaller numbers of signatures, GPU
is slower than CPU. This was to be expected as there is
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Table 1. Performance comparison of CPU and GPU algorithms
for computing signatures.

#Signatures CPU (ms) GPU (ms) Speedup

1,770 0.4 1.0 0.4
34,220 11.5 1.9 6.1

487,635 148.8 13.8 10.8
5,461,512 1770.0 135.8 13.0

50,063,860 17692.5 1162.2 15.2

always a small but non-negligible ramp-up cost for GPU
kernels. Note that the speedup factor increases with the
amount of calculations.

Also, the GPU used for this preliminary evaluation
is a relatively smaller model; high-performance Tesla
GPUs contain thousands of CUDA cores and achieve
significantly higher processing power.

6. Conclusion

In this paper, we presented two independent approaches
of parallelizing the SUBSCALE algorithm. First, we
demonstrated the use of a shared memory multi-core
architecture for parallelization. The CPU cores were
assigned to the slices of the hash table computation and
the results showed linear speedup with the number of
cores.

The second approach uses fine-granular data
parallelism and can be implemented efficiently on
graphics processing units (GPUs). First performance tests
show very promising results, especially for larger data
sets. This part of the work is ongoing; we are currently
implementing the full functionality, including GPU-based
parallel hashing of the signatures.

The two approaches do not exclude each other. In
fact, they can complement each other, using multi-core
parallelism for coarse-grained tasks (processing of
dimensions or hash table slices) and many-core data
parallelism for finer-grained subtasks (such as individual
signature computation).

Future work includes combination of both
approaches, making the best possible use of the different
processing resources.

References
Aggarwal, C.C. and Reddy, C.K. (2013). Data Clustering: Algo-

rithms and Applications, 1st Edn., Chapman & Hall/CRC.

Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C. and Park, J.S.
(1999). Fast algorithms for projected clustering, SIGMOD
Record 28(2): 61–72.

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P. (1998).
Automatic subspace clustering of high dimensional data
for data mining applications, ACM SIGMOD International

Conference on Management of Data, Seattle, WA, USA,
Vol. 27, pp. 94–105.

Alcantara, D.A.F. (2011). Efficient Hash Tables on the GPU,
PhD thesis, University of California Davis, Davis, CA.

Anderson, S.E. (2018). Bit Twiddling Hacks–compute the
lexicographically next bit permutation, http://graph
ics.stanford.edu/˜seander/bithacks.htm
l#NextBitPermutation.

Berkhin, P. (2006). A survey of clustering data mining
techniques, in J. Kogan et al. (Eds.), Grouping Multidimen-
sional Data, Springer, Berlin/Heidelberg, pp. 25–71.

Cheng, C.-H., Fu, A.W. and Zhang, Y. (1999). Entropy-based
subspace clustering for mining numerical data, 5th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, New York, NY, USA, pp. 84–93.

Dagum, L. and Menon, R. (1998). OpenMP: An industry
standard API for shared-memory programming, IEEE
Computational Science Engineering 5(1): 46–55.

Datta, A., Kaur, A., Lauer, T. and Chabbouh, S. (2017). Parallel
subspace clustering using multi-core and many-core
architectures, in M. Kirikova et al. (Eds.), New
Trends in Databases and Information Systems, Springer
International Publishing, Cham, pp. 213–223.

Elhamifar, E. and Vidal, R. (2013). Sparse subspace
clustering: Algorithm, theory, and applications, IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(11): 2765–2781.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A
density-based algorithm for discovering clusters in large
spatial databases with noise, International Conference on
Knowledge Discovery and Data Mining, Portland, OR,
USA, pp. 226–231.

Fan, J., Han, F. and Liu, H. (2014). Challenges of big data
analysis, National Science Review 1(2): 293–314.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recog-
nition, Academic Press, San Diego, CA.

Geiger, A., Lenz, P., Stiller, C. and Urtasun, R. (2013). Vision
meets robotics: The KITTI dataset, The International Jour-
nal of Robotics Research 32(11): 1231–1237.

Google Scholar (2018). Search for ‘data clustering’, https:/
/scholar.google.com/scholar?q=data+clu
stering&btnG=.

Han, J., Kamber, M. and Pei, J. (2011). Data Mining: Concepts
and Techniques, 3rd Edn., Morgan Kaufmann Publishers,
San Francisco, CA.

Harris, M., Sengupta, S. and Owens, J.D. (2007). Parallel prefix
sum (scan) with CUDA, GPU Gems 3(39): 851–876.

Jain, A.K. and Dubes, R.C. (1988). Algorithms for Clustering
Data, Prentice-Hall, Inc., Upper Saddle River, NJ.

Jain, A.K., Murty, M.N. and Flynn, P.J. (1999). Data clustering:
A review, ACM Computing Surveys 31(3): 264–323.

Joliffe, I.T. (2002). Principle Component Analysis, 2nd Edn.,
Springer, New York, NY.

http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
http://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation
https://scholar.google.com/scholar?q=data+clustering&btnG=
https://scholar.google.com/scholar?q=data+clustering&btnG=
https://scholar.google.com/scholar?q=data+clustering&btnG=


90 A. Datta et al.

Jun, J., Chung, S. and McLeod, D. (2006). Subspace clustering
of microarray data based on domain transformation, VLDB
Workshop on Data Mining and Bioinformatics, Seoul, Ko-
rea, pp. 14–28.

Kailing, K., Kriegel, H.-P. and Kröger, P. (2004).
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