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The paper presents new concepts of the identification method based on modulating functions and exact state observers with
its application for identification of a real continuous-time industrial process. The method enables transformation of a system
of differential equations into an algebraic one with the same parameters. Then, these parameters can be estimated using
the least-squares approach. The main problem is the nonlinearity of the MISO process and its noticeable transport delays.
It requires specific modifications to be introduced into the basic identification algorithm. The main goal of the method
is to obtain on-line a temporary linear model of the process around the selected operating point, because fast methods
for tuning PID controller parameters for such a model are well known. Hence, a special adaptive identification approach
with a moving window is proposed, which involves using on-line registered input and output process data. An optimal
identification method for a MISO model assuming decomposition to many inner SISO systems is presented. Additionally,
a special version of the modulating functions method, in which both model parameters and unknown delays are identified,
is tested on real data sets collected from a glass melting installation.
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1. Introduction

One of the still difficult problems in real-time control of
complex and distributed multi-input single-output (MISO)
industrial processes is not only the proper choice of
the vector of reference values (set points) for local
PID controllers, which control single-input single-output
(SISO) subsystems, but also the proper choice of PID
controller parameters. This is especially crucial if the
operating points are often changed. The rules of fast
PID controller tuning are well known, but they assume
the knowledge of the linear SISO model parameters for
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the corresponding subprocess. Hence, to apply these
rules, the supervisory control level should have the
most recent linear models of local subprocesseses. In
some domains, the continuous methods dominate over
the classical discrete approach. Hence, a continuous
methodology to on-line passive (without step response)
identification of a continuous industrial process is used in
this paper.

The presented identification approach uses the
modulating functions method (MFM) and is based on
on-line building a continuous linear dynamic model for
the nonlinear MISO industrial process, which works in
a standard closed-loop control system with local PID
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controllers. In the MISO system only the system inputs
and the output are measured, therefore, the output of
each SISO subprocess is unknown. Hence, for the
identification of each SISO model a special procedure
has to be elaborated. The identification procedure is
performed for consecutive time intervals (the moving
window of a chosen width) and executed only on the
intervals in which the simulated output of the MISO
model and the real system output differ from each other.
If the simulated and real outputs are similar (the error
value is less than a predefined threshold), the identification
procedure is not performed on this interval (the last
obtained model is valid). A detailed description of this
procedure and adopted parameter values are presented in
the experimental part of the paper.

If for the current interval, the system output fulfills
requirements of the operating point and simultaneously
the model predicts this output correctly, then the algorithm
does not change anything. If, however, the dynamic
changes in the real process output (and, simultaneously,
the corresponding MISO model output) do not fulfill
requirements of the operating point in the current interval,
then the actual linear SISO models can be treated as
a basis for a possible correction of PID controller
parameters (PID adaptive tuning). Tuned parameters are
applied to the controllers in the next time interval.

This paper focuses only on the identification aspects.
The procedure of PID parameter tuning is not discussed.
As was already mentioned, if the current model output
differs from the measured output, then the identification
procedure has to be executed in this interval. The
model parameters are updated for the next intervals. The
controller parameters can be tuned based on the new
model. The identification procedure can be repeated in
the last interval many times for the single SISO models.
Such an adaptive correction procedure enables obtaining
optimal parameters of the MISO model.

The lack of an effective solution for the problem of
on-line PID controller tuning and the need to improve the
computer control system in the real glass melting plant
was the main motivation of the described research. A new
contribution to the theory and practice of control systems
is the use of a nonstandard optimal identification method
(with modulating functions), which up to now was used
mainly for SISO models. The extension of this method
to its adaptive version and its use for MISO systems, as
well as for systems with multiple time-delay inputs, is
a key novelty of this paper. Another quite new idea is
the decomposition of the optimization algorithm into two
stages with the use of two different performance indexes
(the equation error for local solutions of SISO models and
the output error for global MISO solution). The described
algorithms are tested on real process data sets collected in
a glassworks, which produces glass containers.

2. Basics of the MFM

In the standard n-th order input-output differential
equation

n∑

i=0

aiy
(i)(t) =

m∑

j=0

bju
(j)(t) (1)

of the continuous SISO linear time invariant (LTI) model,
n + 1 parameters ai associated with derivatives of the
output signal y(t) as well as m + 1 parameters bi
associated with the derivatives of the input signal u(t)
should be identified. The most common situation is
assumed, which mostly occurs in industrial applications,
that the signals y(t) and u(t) are measured, but their
derivatives are not. For parameter identification in this
type of continuous systems, various approaches can be
used. Basically, the results of N experiments must be
obtained, where in general N � n+m+2. An overview
of continuous system identification methods can be found
in the work by Rao and Unbehauen (2006).

One of these methods is the idea of the MFM, which
was originally developed by Shinbrot (1957) for linear and
nonlinear dynamic systems. Its main advantages are the
following:

• no need to discretize a continuous time model,

• no need to know model input and output signals
derivatives,

• elimination of the influence of the initial conditions,

• a finite time interval used in the identification
process.

Many authors extended this method by some
modifications and generalizations to make it suitable
for certain problems. Application for MIMO continuous
systems was proposed by Byrski and Kubiński (1997).
A generalization for fractional differential equations
was made by Janiczek (2010) as well as Asiri and
Laleg-Kirati (2017). Algorithms for models with
unknown delays and for Hammerstein models can be
found in works of Balestrino et al. (2000a; 2000b). MFM
related approaches were also used for state observation.
Examples of such applications can be found in the works
of Byrski and Byrski (2016) or Jouffroy and Reger
(2015).

The MFM is based on the use of the inner product
of functions given by an integral formula and the rule of
integration by parts. Using it on the left-hand side of (1),
we can see that

ai

∫ h

0

y(i)(τ)φ(τ) dτ = ai(−1)i
∫ h

0

y(τ)φ(i)(τ) dτ

(2)
for i ∈ {0, . . . , n}. This formula is valid under the
assumptions that the values of functions y(t), φ(t) and
φ(i)(t) are in the interval [0, h] and, additionally, φ(i)(τ)
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fulfills special boundary conditions: φ(0) = . . . =
φ(n−1)(0) = φ(n)(0) = 0 and φ(h) = . . . =
φ(n−1)(h) = φ(n)(h) = 0. The functions y(i)(τ) are
unknown. Three different approaches are used in the
MFM.

In the first approach, one should repeat for (1) the
above integral formula N times in the same interval [0, h]
for N different modulating functions φk(τ), where k =
1, . . . , N . The signal y(τ) should be given within the
same time interval [0, h]. The modulating function φk(τ)
should be used for each i-th and j-th term for the whole
equation

ai

∫ h

0

y(i)(τ)φk(τ) dτ

= ai(−1)i
∫ h

0

y(τ)φ
(i)
k (τ) dτ. (3)

It will generate the set of N independent algebraic linear
equations representing effects of filtering y(t) on [0, h] by
the use of N different finite impulse response (FIR) filters.
It allows us to obtain the solution of the identification
problem on the interval [0, h] based on the output error
method (OEM) and minimization of the sum of N square
errors, utilizing the least-squares method. Examples of
this methodology can be found in works of Jouffroy and
Reger (2015) and Cieza et al. (2014).

In the second approach, one can use only one
modulating function φ(τ), given on the interval [0, h],
but used for N different fragments of the signal y(τ)
which was measured within N different time intervals
[tk−h, tk] of the same width h, where k = 1, . . . , N ,
within the whole identification interval TID, tN < TID.
The equation is in the form

ai

∫ tk

tk−h

y(i)(τ)φ(τ) dτ

= ai(−1)i
∫ tk

tk−h

y(τ)φ(i)(τ) dτ. (4)

The signal y(t) is assumed to be persistently exciting
of a sufficient order. Then it will generate a set of
N independent linear equations representing effects of
filtering y(t) with the use of one FIR filter in different
time intervals. It allows finding the solution to the
parameter identification problem for the whole interval
[0, TID] based on OEM and minimization of the sum
of N square errors, which can be expressed by the
formula for the optimal parameters, which follows from
the least-squares method. The result of such identification
can give satisfactory results if the system is stationary (has
time-invariant parameters). If the system is non stationary,
then this approach will yield a result, which will represent
the average parameters values θ for the whole interval

[0, TID]. The described method was applied by Balestrino
et al. (2000a; 2000b).

In the above two approaches, the method of N
repeated experiments enables using the sum of N square
errors. In these methods calculations in the continuous
time domain are also applied (integrals).

In the third approach, presented by Byrski and Fuksa
(1995), one can use a fully continuous methodology
for parameter identification of the continuous system
with the use of convolution transformation and only one
modulating function φ(τ), which has compact support
[0, h]—it is nonzero inside this interval and is zero outside
this interval. This function forms a continuous moving
convoluting window of width h within the interval [t −
h, t], ∀t ∈ [h, TID]. In the interval [t − h, t] the
convolution function is convoluted with each i-th term of
the differential equation

ai

∫ ∞

−∞
y(i)(τ)φ(t − τ) dτ

= ai

∫ t

t−h

y(τ)φ(i)(t− τ) dτ

= ai

∫ h

0

y(t− τ)φ(i)(τ) dτ
def
= aiyi(t). (5)

This process will generate new continuous functions yi(t)
and ui(t) from Eqn. (1) within the whole identification
interval t ∈ [h, TID], which can be interpreted as an
infinite number of computational experiments performed
continuously, within each interval [t − h, t] for each
moment of time t ∈ [h, TID]. Based on the equation error
method (EEM) and these functions, instead of a finite
sum of N square errors, one can calculate the values of
the new square error integral in the whole identification
interval [h, TID]. This second integral represents the
inner products of these functions and finally enables
calculation of the real Gram matrix G(TID). Using its
inverse G−1(TID) and a modified least-squares method,
the parameters θ(TID) can be found. In this approach,
the on-line continuous version of parameter identification
for t > TID is also possible. To this end, the moving
identification window within the current time interval [t−
TID + h, t] for t > TID can be used based on continuous
calculation of the integral inner products and continuous
evolution of the Gram matrix G(t). If the system is
nonstationary, then it allows tracking the evolution of
time-variant parameters θ(t). If the system is stationary,
it will give the same constant value θ(t) = θ(TID). It
is very useful for on-line identification of continuous LTI
systems with different constraints for parameters. New
modifications of this idea can be found in the work of
Byrski and Byrski (2012). In this paper, the third approach
presented above will be used.
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3. MFM used for the MISO system

Starting from this section, the index k will be used for
numbering SISO subsystems forming the MISO system,
in contrast to the previous section, where it was used as
the number of the subsequent experiment. The differential
equation representing the linear MISO system with K
inputs and single output can be expressed as

n∑

i=0

aiy
(i)(t) =

K∑

k=1

mk∑

j=0

bkju
(j)
k (t)

=

m1∑

j=0

b1ju
(j)
1 (t) + · · ·+

mK∑

j=0

bKju
(j)
K (t).

(6)

Functions y(i), u
(j)
1 , . . . , u

(j)
K are the derivatives of the

inputs and the output given on the interval [t0, TID].
There are n output derivatives and mk derivatives for
the k-th input, where mk ≤ n, ∀k = 1, . . . ,K . The
corresponding diagram is presented in Fig. 1.

Equation (6) represents the MISO system with an
assumed special feature, i.e., that all SISO transfer
functions, which form the MISO system, have their
common denominator. Apart from this structure, in the
identification algorithm presented in this paper also the
differential equation

n∑

i=0

akiy
(i)
k (t) =

mk∑

j=0

bkju
(j)
k (t) (7)

for each individual k-th SISO system forming the MISO
system

K∑

k=1

yk(t) = y(t) (8)

will be used. In this case, individual SISO systems may
have different denominators.

Equation (6) can be transformed into an algebraic
one after performing convolutions with the modulating

SISO 1

SISO 2

SISO K-1

SISO K

�

u K-1

y

y 1

y 2

y K

y K-1

MISO system

u 1

u 2

u K

∑

Fig. 1. MISO model diagram.

function φ using the property

yi(t) = [y(i) ∗ φ](t) = [y ∗ φ(i)](t),

ui(t) = [u(i) ∗ φ](t) = [u ∗ φ(i)](t). (9)

The new equation

n∑

i=0

aiyi(t)

=

m1∑

j=0

b1ju1j(t) + · · ·+
mK∑

j=0

bkjuKj(t) + ε(t) (10)

has the same vector of n + m1 + · · · + mK + K + 1
unknown parameters ai and b1j , . . . , bKj .

Remark 1. Unless otherwise stated, in this section the
lower indices of y will be used for functions obtained after
the convolution transformation, like in (10). They are not
the same as the original functions y(i)k (t) in (7) and yk(t)
in (8).

The modulating function φ should be defined on the
whole space R and meet specified conditions:

• φ is supposed to be nonzero in the interval [0, h]
and zero outside this interval, i.e., it has a compact
support of width h (closed and bounded); for t0 =
0, the identification interval should be TID > 2h
(however, it is not necessary and, formally, it is
enough if TID > h);

• φ ∈ Cn−1[0, h] is n− 1 times differentiable;

• φ(i)(0) = φ(i)(h) = 0 for i = 0, . . . , n− 1.

• y ∗ φ = 0 ⇒ y = 0 on the interval [t0 + h, TID].

In this paper, the Loeb–Cahen functions

φ(t) = tN (h− t)M (11)

will be used. Other authors proposed different types
of functions. Especially spline modulating functions
have strong theoretical basis (Maletinsky, 1979; Preisig
and Rippin, 1993). Efficient identification algorithms
using sinusoidal modulating functions related to the fast
Fourier transform can be found in the works of Pearson
et al. (1994) or Co and Ydstie (1990). The transformed
functions have the form

yi = y(t) ∗ φ(i)(t) =

∫ t

t−h

y(τ)φ(i)(t− τ) dτ. (12)

Due to the signal noise and the equation error, in
(10) there is the term ε(t) representing the difference
between the convoluted signals for system inputs and
output. The discussion of disturbances and their influence
on the equation error (EE) was made by Byrski and Byrski
(2012).
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The square error value ε(t) can be treated as a
performance index for the MISO model (6) as well as for
the selected SISO models (7). Denoting by θ the vector of
the parameters of the model (6) and by c(t) the modulated
measurements vector, the equation error can be obtained
as

ε(t) = cT (t)θ

= [y0(t), . . . , yn(t),−u10(t), . . . ,

− u1m1 , . . . ,−uK0, . . . ,−uKmK (t)]

⎡

⎢⎢⎢⎣

a
b1
...

bK

⎤

⎥⎥⎥⎦ ,

(13)

where a, b1, . . . , bK are column vectors of suitable
dimensions n + 1,m1 + 1, . . . ,mK + 1, θ ∈
R

n+m1+···+mK+K+1.
The minimization problem can be formulated in

L2[t0 + h, TID] as

min
θ

J2 = min ‖ε(t)‖2L2[t0+h,T ] = min ‖c(t)Tθ‖2L2.

(14)
In order to avoid a trivial solution, the following linear
constraint is assumed:

ηT

⎡

⎢⎢⎢⎣

a
b1
...

bK

⎤

⎥⎥⎥⎦ = ηTθ = 1, (15)

where η ∈ R
n+m1+···+mK+K+1 is an arbitrarily chosen

vector and η 	= 0. The norm in (14) can be written down
as the inner product in L2,

J2 = 〈cT (t)θ, cT (t)θ〉L2

= θT 〈c(t), cT (t)〉θ
= θTGθ. (16)

Remark 2. In the paper the special non-italic font
was used for the Gram matrix G in contrast to other
expressions denoted by G.

The square real Gram matrix G (18) in the above
quadratic form (16) is created by the inner products in L2

of c(t) elements, where

〈yi, uj〉 =
∫ TID

t0+h

yi(τ)uj(τ) dτ. (17)

The optimal solution for the given linear constraint η
can be found using the Lagrange multiplier technique:

L = θTGθ + λ(ηTθ − 1). (19)

Based on necessary optimality conditions, the solution can
be obtained in the form

θo =
G−1η

ηTG−1η
. (20)

Substituting (20) into (16), another formula for the
minimal value of the identification performance index can
be obtained as

J =
1√

ηTG−1η
. (21)

Byrski and Byrski (2012) thoroughly discuss
selection of the vector η. Taking this vector from a
unit ball, it appears that the best η, which additionally
minimizes the performance index (21), is the eigenvector
of the Gram matrix G (18), which corresponds to the
minimal eigenvalue of G. Such a direction of the
subspace for the parameters constraint guarantees the
minimum of the mean square equation error, what has
the interpretation of the best parameters estimate under
the Gaussian white noise existence in measurements. A
more thorough discussion of the disturbance presence and
its influence on the EE was made by Byrski and Byrski
(2012). However, it turns out that in the case of nonlinear
system identification better results can be obtained by
decomposition of the MISO system to K SISO separate
subsystems. Each of these SISOk models can be
identified independently. Assuming a new performance
index, defined as the squared difference between the real
system output and the simulated MISO model output
(OEM), another constraint vector ηk for the k-th SISO
subsystem should be used. In the proposed algorithm,
the resulting MISO model is identified with the use of
the Gauss–Seidel-like method and the OEM as the main
performance index, while in each direction (for a single
SISO model) the EEM is used as the method for local
identification. The constraint vector ηk can be interpreted
as the directional variable in each step of the method. For
each ηk the formula (20) will provide the local SISOk

model what enables simulation of the single output yk.

3.1. Identification of the MISO system with delays.
Many physical systems can be described as input-delay
systems. The original continuous version of the applied
MFM described by Byrski and Fuksa (1995) was intended
for systems without delays. Rao and Sivakumar (1979),
suggested a method of identifying the system delay by
minimizing a cost function whose value depends on the
difference between the process and model outputs. An
interesting method of identifying both the linear system
parameters and delay was proposed by Kozłowski and
Kowalczuk (2015). The algorithm presented by Balestrino
et al. (2000b) can be used for a certain class of systems in
the case of single and multiple delays between inputs and
outputs and involves introducing additional time-shifted
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G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈y0, y0〉 . . . 〈y0, yn〉
...

. . .
...

〈yn, y0〉 . . . 〈yn, yn〉
−〈u10, y0〉 . . . −〈u10, yn〉

...
. . .

...
−〈u1m1 , y0〉 . . . −〈u1m1 , yn〉

...
. . .

...
−〈uK0, y0〉 . . . −〈uK0, yn〉

...
. . .

...
−〈uKmK , y0〉 . . . −〈uKmK , yn〉
−〈y0, u10〉 . . . −〈y0, u1m1〉 . . . −〈y0, uK0〉 . . . −〈y0, uKmK 〉

...
. . .

... . . .
...

. . .
...

−〈yn, u10〉 . . . −〈yn, u1m1〉 . . . −〈yn, uK0〉 . . . −〈yn, uKmK 〉
〈u10, u10〉 . . . 〈u10, u1m1〉 . . . 〈u10, uK0〉 . . . 〈u10, uKmK 〉

...
. . .

... . . .
...

. . .
...

〈u1m1 , u10〉 . . . 〈u1m1 , u1m1〉 . . . 〈u1m1 , uK0〉 . . . 〈u1m1 , uKmK 〉
...

. . .
... . . .

...
. . .

...
〈uK0, u10〉 . . . 〈uK0, u1m1〉 . . . 〈uK0, uK0〉 . . . 〈uK0, uKmK 〉

...
. . .

... . . .
...

. . .
...

〈uKmK , u10〉 . . . 〈uKmK , u1m1〉 . . . 〈uKmK , uK0〉 . . . 〈uKmK , uKmK 〉

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

signals for the system inputs. A modified form of the
MISO model (6) is adopted. Instead of many derivatives
of each control signal u(j)

k (t) for the k-th SISO model,
signal uk(t) itself is included. The multi-delay structure
presented in Fig. 2 is assumed. This version of the MISO
system with K inputs has the form

n∑

i=0

aiy
(i)(t) =

K∑

k=1

Qk−1∑

q=0

bkqukq(t), (22)

where ukq(t) = uk(t − (Tk + qτk)). Hence, finally
in this paper, MISO systems with an identified transfer
function numerator of zero degree are considered: mk =
0, ∀k = 1, . . . ,K .

System (22) can now be transformed using
modulating functions into the form

n∑

i=0

aiyi(t) = ũ(t)T b̃. (23)

In the vector of modulated input signals ũ(t), there
are Qk time-shifted signals for each k-th input, where
q = 1, . . . , Qk − 1. Starting from the second, the q-th
signal is shifted by the constant time interval τk with
respect to the previous vector element. The first signal
corresponds to the system input Tk0 seconds ago. Vector

ũ(t) has the form

ũ(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t

t−h
u1(τ − T10)φ(t − τ) dτ∫ t

t−h u1(τ − τ1 − T10)φ(t− τ) dτ
...∫ t

t−h u1(τ − (Q1 − 1)τ1 − T10)φ(t − τ) dτ
...∫ t

t−h uK(τ − TK0)φ(t − τ) dτ
...∫ t

t−h uK(τ − (QK − 1)τK − TK0)φ(t− τ) dτ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

Vector b̃ consists of parameters for each function and can
be expressed as

b̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b10
b11

...
b1Q1−1

...
bK0

...
bKQK−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)
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Fig. 2. MISO model diagram with delays.

The number of identified parameters in this case is equal
to n+

∑K
k=1 Qk + 1. Further stages of the identification

procedure are analogous as previously.
The described approach is valid on the condition that

the real system input function can always be precisely
estimated as a linear combination of the defined number
of time-shifted input signals. The proof can be found in
the work by Balestrino et al. (2000b).

4. Decomposition idea for adaptive
identification of the MISO model

The main objective of this paper is to present a new idea of
using the MFM for some nonlinear dynamic systems. The
common use of the MFM for nonlinear systems is mostly
adequate for the systems in the form

y(n)(t) + f
(n−1)
n−1 [y(t)] + · · ·+ f0[y(t)] = b0u(t). (26)

Signals y(t) and u(t) are measured and all nonlinear
functions fi[y(t)] are also known. The derivatives of

y(i)(t) as well as f (i)
i [y(t)] are unknown. Then the MFM

may be used directly. However, if the nonlinearity has the
form fi[y

(i)(t)], then the MFM cannot be used.
The proposed modification of standard identification

algorithms assumes the use of local linear models
which accurately reflect the real system behaviour in
specified time intervals. This approach enables on-line
identification of nonlinear objects.

The described on-line algorithm implements an
adaptive method for the best identification of the MISO
system by repetition of the identification procedure
in successive moving windows with width T . The
identification of parameters is always based on the
input-output data from the last window. Based on the
system model obtained, the simulation procedure predicts
the output for the next window (next interval). Then
comparison between the simulated and the real outputs

will be made in this window. The adaptive identification
procedure includes two cases:

• If the simulated output concerning the last window
is close enough to the real system output, then
the procedure does not change the last model and
continues the simulation for the next interval.

• If the simulation shows significant differences
between the predicted and actual outputs, calculated
based on the last window, then a new identification
step is performed and the new model for this last data
window is being searched.

An important idea used in this algorithm is that the
parameter identification procedure for the MISO model is
performed by the consecutive identification of the SISOk

models separately, for k ∈ {1, . . . ,K}. The classical
approach for MISO systems (6) described in Section 3 is
performed only once at the initial moment, to obtain the
initial system parameters.

For each SISOk model (7) the EEM for identification
of parameters θk is used with a suitably the chosen vector
ηk corresponding to the parameters constraint ηkθk = 1.
This identification of the single SISOk model is performed
in the interval [tj−1, tj ] = [tj − T, tj ]. In the next
interval [tj , tj+1], the outputs yk(t) of all SISOk models
are simulated and thus the full predicted output ys(t) =∑K

k=1 yk(t) of the MISO model. In this interval the
difference between the real system output y(t) and ys(t) is
found and the integrated square error is finally calculated
using the OEM. If in the interval [tj , tj+1] the output error
of the full MISO model is greater than some prescribed
value, then the identification procedure is repeated for the
subsequent SISOk models. A suitable system input and
the hypothetical output yk(t), calculated as the difference
between the real system output and the simulated outputs
of other SISO models are used for the identification. In the
next interval [tj+1, tj+2] the obtained models parameters
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are applied. If in the interval [tj , tj+1] the integral of
the output square error of the full MISO model is less
than some prescribed value, then the on-line identification
procedure is omitted and for simulation of the MISO
model output, the last obtained model is kept unchanged.

Hence, the main identification procedure can be
interpreted as a nonlinear optimization algorithm of the
Gauss–Seidel type (Khoury and Harder, 2016), where the
main performance index of identification for the MISO
model is based on the output error in the full space
of all MISO parameters. The consecutive minimization
steps in each subspace (orthogonal directions) associated
with each SISOk model are based on the EEM and local
iterations of different ηk. An idea similar to some extent,
in which the MIMO system was divided into separately
identified SISO systems, was described by Rao et al.
(1984).

The second objective of this paper is the practical
implementation of the above described identification
approach for the problem of modeling glass temperature
changes for a single zone of glass forehearth, in which
a local PID controller is employed and the gas-air
mixture is dosed. The identified system is described
using a linear model with two inputs: gas-air mixture
pressure and molten glass temperature from the previous
forehearth zone. The model parameters can be changed
during the on-line identification process to ensure a
better fit for the current process characteristics, which
is nonlinear. The method described by Byrski and
Byrski (2012) serves as a basic part of the proposed
algorithm. In this paper, this algorithm is also used for
the extended version of the method, in which the MISO
model is composed of multiple linear SISO models with
time-shifted input signals. Including many systems with
different time-delays has the objective of identifying the
actual system time-delay value. Balestrino et al. (2000b)
tested a similar approach.

5. Temperature control for multi-zone glass
forehearths

The glassware manufacturing process can be divided into
three main stages:

• melting raw materials in a glass furnace,

• stabilizing molten glass temperature in working end
and forehearths zones,

• forming glass containers with forming machines.

The whole process is very energy-consuming.
Significant amounts of gas or oil are used during the
production not only to melt the glass batch, but also
to heat molten glass flowing through the forehearths.
Another aspect connected with production of glass
containers concerns ensuring adequate quality of final

product. Especially glass homogeneity, which depends
on temperature differences between glass layers in the
forehearth, has a big impact on this issue. During the
technological process the type of the final product can be
changed. In this situation a new operating point should
be set, and the forehearth pull rate (weight of produced
glass) and the temperature set points for regulators need
to be changed. The production cannot be continued
until the installation parameters are stabilized. An ideal
control system should ensure quick operation, in order to
minimize production downtimes. The single forehearth is
divided into few zones, e.g., rear, front and conditioning
as presented by Gough and Matovich (1997). In a
typical case, each zone has its own temperature controller
which controls gas-air mixture pressure. Some zones can
also have installed other devices, like waste dampers for
discharging exhaust gases and cooling dampers to lower
the molten glass temperature.

As was already pointed out, the forehearth control
system should ensure obtaining the desired temperature
profile for the molten glass. The desired glass temperature
in each zone depends on the specified product. It
is measured with single or multi-point thermocouples.
In the last zone, often three three-point thermocouples
are installed. It allows determining the molten glass
temperature for the whole profile. Based on these
measures, glass homogeneity can be calculated. In the
analyzed installation, each zone has its own temperature
controller adjusting mixture valves positions (one for each
zone). The diagram of the described forehearth control
system is presented in Fig. 3.

As was noticed previously, high demands on the
described control system imply that conventional single
control loops can be often insufficient for the analyzed
problem. The proportional-integral-derivative (PID)
controllers, which are primarily used, do not have a

Zone 1

GAS-AIR MIXTURE

Zone 2 Zone 3
GLASS

T

T

T

T

T

T

T

T

T

T

T

S
p

o
u

t

PID PID PID

SUPERVISORY CONTROL

F
U

R
N

A
C

E

Fig. 3. Forehearth control system.
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predictive capability. Some authors proposed more
sophisticated control structures. Ayla and Solis (1991)
suggested replacing PID loops with a self-organizing
fuzzy controller. Yet another idea involves using a
predictive controller. Wang et al. (1997) claim that
replacing PID controllers by the generalized predictive
control (GPC) algorithm can improve the real process
control quality. An interesting example of the predictive
controller cooperating with an adaptive model was
described by Gough and Matovich (1997). The problem
of process model synthesis for a predictive controller was
discussed by Grega et al. (2015). The finite element
method was proposed to make the synthesis of the
process model possible to use in a real-time environment.
Grega et al. (2016) analyzed practical aspects of various
variants of implementing the hierarchical controller for
the forehearth control system. Advantages and drawbacks
of the described solutions were pointed out.

6. Algorithm description

The method described in Section 4 is supposed to allow
on-line identification of the single glass forehearth zone
dynamics. The gas-air mixture pressure, which is the PID
control variable, and molten glass temperature from the
previous forehearth zone are treated as the model inputs,
while the current zone glass temperature is the system
output. The constructed model should allow predicting
molten glass temperature changes for the current zone in
response to the defined inputs for a short defined time
horizon, which can be useful for on-line controller tuning.

The algorithm is based on the MFM, but as was
pointed out in Section 4, this simple approach is not
sufficient in this case. Due to the real plant nonlinearity,
and the spatiotemporal nature, accurate simulation results
cannot be obtained using an LTI model, for the whole
time interval. It was adopted that the object parameters
can change significantly during the identification. Finding
suitable intervals, in which the model synthesis can be
performed, is a key element of the procedure. Before a
detailed method description, some assumptions have to be
made:

• The model is linearized around a selected steady
state.

• The model has a MISO form. Its output can be
treated as a sum of individual SISO models outputs.

• Parameters of constitutive SISO models can be
changed during the identification process, as well as
the structure of the model (different number of delays
for each SISO model control signal).

• The identification range is partitioned into smaller
intervals. In the first interval of width Tstart only the
whole MISO system identification is performed. In

the other intervals of width T the system simulation
is performed and the model parameters can be
changed by identifying individual SISO systems.

• There are transport delays for the model inputs which
have to be included during the model synthesis—the
measured signals are appropriately shifted.

6.1. Exact state observers. For the modeling and
identification of the continuous SISOk LTI subsystem of
the MISO system presented in Fig. 1, the standard transfer
function is used

Gk(s) =
bkn−1s

n−1 + · · ·+ bk0
aknsn + · · ·+ ak1s+ ak0

, (27)

where, by definition, the initial conditions are zero and no
transport delay occurs.

Although the presented identification method with
the use of modulating functions is insensitive to system
initial conditions, the knowledge of these conditions is
crucial for the output simulation purposes. Due to
the above-mentioned model changes in consecutive time
intervals, the ability to perform continuous simulation
with nonzero initial conditions in each interval is essential.
Hence, for the exact simulation procedure, besides of the
transfer function of type (27), also the standard state space
model will be used with suitable matrices:

ẋk(t) = Axk(t) +Buk(t),

yk(t) = Cxk(t) +Duk(t), (28)

where

xk(t) ∈ R
n, uk(t) ∈ R, yk(t) ∈ R, ∀t > 0,

A =

⎡

⎢⎢⎢⎢⎣

0 . . . 0 − ak0

akn

1
. . .

...
...

...
. . . 0 −akn−2

akn

0 . . . 1 −akn−1

akn

⎤

⎥⎥⎥⎥⎦
, B =

⎡

⎢⎣

bk0

akn

...
bkn−1

akn

⎤

⎥⎦ ,

C =
[
0 . . . 1

]
, D = 0. (29)

These matrices will guarantee the state observability,
and hence, the use of the state observers. The standard
asymptotic state observers, like the Luenberger observer,
generate only the estimate of the actual state, which in
a long interval asymptotically converges to the actual
state. However, it is impossible to calculate exactly the
estimation error at any moment, because the value of
the actual state is unknown. Instead of this type of the
differential state estimators, in the paper the exact state
observers will be used. From the theory of exact state
integral observers (Byrski and Byrski, 2016) it is known
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that such observers, for any final observation interval T
(assumed in advance), can calculate the actual value of
the observed state xk(t1) at the final moment t1 of the
observation window [t1 − T, t1]. For the simulation and
prediction of the state in the next time interval [t1, t1 +T ]
and hence for simulation of the unmeasured individual
outputs yk(t) of the SISOk models in this interval, one
needs to know the exact value of the state xk(t1) at
the beginning of this interval. The final value from the
previous interval will be used as the initial state condition
in the next interval.

Below the general formula for the exact state
observer of the final state xk(T ) ∈ R

n of the SISOk

system calculated in some general interval [0, T ] will be
recalled. The final value of the state, at the moment T , is
given by

xk(T ) =

∫ T

0

G1(t)yk(t) dt+

∫ T

0

G2(t)uk(t) dt. (30)

Remark 3. In this section G1(t) and G2(t) denote the
observer matrices.

One can see that after multiplication of matrix
functions G1(t) by the output signal measurements yk(t)
and matrix G2(t) by the input signal uk(t) on interval
[0, T ] and integration of these products, the observer
will give the exact state xk(T ) for any chosen T . The
form of these matrices as well as the form of the
corresponding Gramian M0 results from the definition of
state observability. The observer matrices given for this
basic interval t ∈ [0, T ] are

G1(t) = eATM−1
0 eA

′tC ′, (31)

G2(t) = eATM−1
0

[∫ t

0

eA
′τC ′CeAτ dτ

]
e−AtB,

(32)
where

M0 =

∫ T

0

eA
′τC ′CeAτ dτ.

These matrices can be obtained from the general output
equation of the system (29)

yk(t) = Ce−A(T−t)xk(T )−C

∫ T

t

eA(t−s)Buk(s) ds.

(33)
For calculation of x(T ) one should multiply both

the sides of this equation by the matrix e−A′(T−t)C ′ and
integrate it over [0, T ]. For an observable system, the
Gram matrix M0 is nonsingular for any T . Then one can
derive the form (30) of the observer and the matrices (31)
and (32). Based on the formula (30) it is easy to see that
the equation describing the shifted version of the integral
observer, working in consecutive time intervals [tp−T, tp]

has receding limits

xk(tp) =

∫ tp

tp−T

G1(T − tp + t)yk(t) dt

+

∫ tp

tp−T

G2(T − tp + t)uk(t) dt, (34)

where the successive time moments are

tp = t0 + Tstart + (p− 1) · T, p = 2, 3, . . . .

This type of the state observer will be used for the
reconstruction of each SISOk model state. The whole
MISO system (37) state x(tp) ∈ R

K·n consists of the state
vectors for all SISO submodels. After reconstruction of
the final state x(tp) in the p-th interval, this state will be
used as the initial condition for the simulation of the state
in the next, (p+ 1)-th interval, and thus the calculation of
all individual output signals yk of each SISOk model can
be performed.

Finally, the calculation of the whole simulated output
function ys is possible, as a sum of individual yk, which
enables its comparison with the actual output y measured
in the (p+ 1) interval.

There is one more important and interesting problem
in the theory and application of exact state observers.
It is the choice of the state observation interval T . In
this paper, the time T is the width of the observation
window and also the width of the simulation intervals. For
different T , the formulas (30) and (31) give different form
of the exact state observers. Different state observers have
different norms defined in the function space (L2[0, T ])×
(L2[0, T ])

‖(G1,G2)‖2 =

T∫

0

[
n∑

i=1

(gi1(τ)
2 +

n∑

i=1

(gi2(τ)
2)

]
dτ,

(35)

where gi1(τ), gi2(τ) are the i-th row entries of vectors
G1,G2.

Theoretically, from the point of view of observation
problems, if in the input-output measurement the
disturbances (noise) do not exist, then the exactness of
state reconstruction does not depend on time T . However,
if in measurements of y and u a disturbance occurs
(bounded signals belonging to the unit ball ‖z1‖ ≤ 1,
‖z2‖ ≤ 1 ) then the reconstruction error will appear and
its norm will be estimated by the observer norm

√
0.5 max

(z1,z2)
‖ε‖Rn ≤ ‖(G1,G2)‖L2×L2. (36)

It turns out that with decreasing T , the observer’s
norm increases, even up to infinity as T tends to zero.
Hence, in practice for disturbed measurements of y and
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u the reconstruction error (estimated by the norm of the
observer) will be lower for higher T . Therefore the choice
of the best T is very important and will be the aim of the
future research. By different exact state observers it is
also possible to perform the reconstruction of the norm
of different disturbances acting in the system (Byrski and
Byrski, 2018).

6.2. Identification procedure description. The state
equations of the MISO system, shown in Fig. 1, can
be expressed in the form (37), where K is the number
of system inputs, n signifies the degree of the transfer
function denominator for the k-th input (it is assumed
that denominators for each input have the same rank),
mk means the degree of the transfer function numerator
for the k-th input. It is assumed that for specified input
bki = 0 for i > mk.

Applying the classical methodology based on
the EEM, according to Section 3, for the whole
analyzed system, did not give satisfactory results. The
difference between the actual system output and the
obtained simulation results was significant. Numerical
optimization of the constraint vector η for stored historical
data and the use of the general EEM for the whole MISO
system, invariably produced the MISO model parameters
that did not guarantee a good matching of the actual output
values with the model response. Hence, one can conclude,
that it is impossible to find one and best constraint
vector η with the use of some nonlinear optimization
procedure (e.g., the MATLAB fminsearch algorithm) for
the whole MISO system. For this reason a new adaptive
methodology inspired by the Gauss–Seidel method was
adopted for the problem of finding the best fit of actual
and simulated signals. The problem was decomposed into
subproblems solved in subspaces with fewer dimensions.

In further research, the assumption of the transport
multi-delayed model structure and the zero order of the
transfer function numerator m = 0, according to (22),
turns out to be more appropriate than the system without
delays and with the order m = n − 1, like in the transfer
function (27). Hence, according to Section 3.1, for each
individual SISOk transfer function, the model with Qk

different delays given as

Gk(s) =
bk0e

−Tk0s + bk1e
−(Tk0+τk

)s + . . .

aknsn + · · ·+ ak1s+ ak0
(38)

+
bk(Qk−1)e

−(Tk0+(Qk−1)τk)s

aknsn + · · ·+ ak1s+ ak0

will be assumed. The values of the corresponding
parameters bki are calculated during the identification
procedure by the MFM, that is why some bki = 0 are
also possible to occur.

Hence, there are K submodels. In the considered
case of only a single delay for each k-th subsystem, the

main problem is solved in the space R
K·(n+1)+K , while

the space of the k-th subproblem has n+ 2 dimensions,

R
n+2 → EEM

...
R

n+2 → EEM

⎫
⎪⎬

⎪⎭
→ OEM.

In the case of additional inputs, assuming that each
k-th input signal is associated with Qk time-shifted
signals, the main problem is stated in the space
R

K·(n+1)+
∑K

k=1 Qk , while each subproblem space has
n+Qk + 1 dimensions,

R
n+Q1+1 → EEM

...
R

n+QK+1 → EEM

⎫
⎪⎬

⎪⎭
→ OEM.

These subproblems are solved to find the best
parameter vector θk for SISOk model according to the
formula (20). At this stage, different constraint vectors ηk

may be chosen. As was stated before by Byrski and Byrski
(2012), it was proven that the vector guaranteeing the least
value of the performance index (21) should be chosen
as the eigenvector which corresponds to the minimal
eigenvalue of the Gram matrix G. Numerical experiments
for the real object indicate that, despite minimizing the
performance index (21), the obtained parameters yield
unsatisfactory simulation results for other data intervals.
For this reason, the optimal vector η was found in
subsequent iterations and simulations.

The performance index Ei for the main problem
is stated as the integrated square error of the difference
between the actual system y(t) and the simulated system
output ys(t) (OEM):

Ei =

∫ tp

tp−T

(y(t)− ys(t))
2 dt. (39)

The overall identification procedure can be divided
into several steps. Its general outline is presented in
the form of Algorithm 1. It should be noted that the
presented algorithm can be used both off-line and on-line.
In the first case, the collected historical data are used and
forward simulation can be made at once for the whole
interval. Otherwise, the prediction horizon is limited by
the minimum delay of the uncontrolled input (e.g., the
previous zone glass temperature in the described case).

The first stage of the procedure concerns finding the
operating point, where the system can be linearized. It
is clear that the derivatives of the state variables near the
steady state should be zero. In the analyzed problem there
is no direct information about the derivatives of the state
variables. That is why the operating point is determined
based on the convoluted output signals yi. Their values
should be smallest possible near this point. This idea is
described in Algorithm 2.
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A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎢⎢⎣

0 . . . 0 − a10

a1n

1
. . .

...
...

...
. . . 0 −a1n−2

a1n

0 . . . 1 −a1n−1

a1n

⎤

⎥⎥⎥⎥⎦
0

. . .

0

⎡

⎢⎢⎢⎢⎣

0 . . . 0 − ak0

akn

1
. . .

...
...

...
. . . 0 −akn−2

akn

0 . . . 1 −akn−1

akn

⎤

⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(K·n×K·n)

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎣

b10
a1n

...
b1n−1

a1n

⎤

⎥⎦ 0
. . .

0
⎡

⎢⎣

bk0

akn

...
bkn−1

akn

⎤

⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(K·n×K)

,

C =
[ [

0 . . . 1
]

. . .
[
0 . . . 1

] ]

(1×K·n)
, D =

[
0 . . . 0

]
.

(1×K)

(37)

If the operating point is found, the specific
identification procedure can be applied. As was
mentioned before, model parameters are changed based
on the input-output signal values only for the specified
intervals. In the first interval, the MISO model
is identified according to the algorithm described in
Section 3 for systems with multiple inputs and a single
output. The obtained MISO model can be presented
as a sum of individual SISO models with the same
denominators. These models are used for the system
output simulation. In the next intervals, if the model
output differs significantly from the actual system output,
the re-identification is performed based on the data from
the last interval. For each k-th input, the simulated SISOk

model output is obtained as the difference between the
actual system output and the sum of simulated SISO
models outputs different from k. Then, the k-th SISO
model is identified using the registered input signal and
the simulated output signal. The simulation for the whole
MISO system is performed again for the updated system.
If the new performance index (39) value is lower than
for the previous model, the identification procedure is
repeated for the next (k + 1)-th SISO model. The SISO
models updated previously are used for the simulation
of the MISO system in the next steps. The whole
operation for the single SISO systems is repeated until
the performance index cannot be improved. Otherwise,
the procedure is stopped and the best obtained models,
minimizing the performance index (39) value, are stored.
It is worth noting that the obtained SISO models may have
different denominators, in contrast to the models obtained
in the first interval. The described identification method is
presented as Algorithm 3.

7. Experimental results

In order to evaluate the effectiveness of the described
method, based on the real process data, two experiments
were performed off-line for previously collected historical
data. In both of them, the same two data sets shown in
Figs. 4 and 5 were used. The data were collected from the
last forehearth zone (before the spout) of the real glass
containers production line. The air-gas mixture is the
only controlled process variable. All signals are sampled
once per second. The molten glass temperatures can be
measured in the range 900–1400 ◦C with thermocouples.
Mixture pressure can be measured in the range 0–10
kPa. In practice, the maximum mixture pressure value
that can be obtained is limited to 6 kPa. In both cases
32-bit analog-to-digital converters were used. Input and
output signals for the system are measured directly, so
the controller dynamics can be neglected in the analyzed
problem.

It was assumed that the overall MISO model is
composed of two submodels (K = 2) related to the
system inputs. For the first submodel the mixture
pressure is denoted as u1 and the submodel output as
y1. Similarly, for the second SISO submodel the previous
zone temperature is denoted as u2 and the SISO2 output
as y2. In the first experiment, single delays were assumed
for signals u1 and u2. One should substitute Q1 = 1
and Q2 = 1 into (24). In the second case, multiple
time-shifted input signals were applied for the second
signal: Q1 = 1, Q2 = 5. The MFM coefficients,
common for both models, are presented in Table 1. In
both experiments the same delay values for models were
assumed: 13 s for SISO1 (the mixture pressure) and
50 s for SISO2 (the previous zone glass temperature).
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Algorithm 1. Overall identification procedure.
Step 1. Collect data for the input signals:
u1(t), . . . , uK(t) where k = 1, . . . ,K as well as
data for the single output signal y(t). Specify the number
of identification intervals pend.

Step 2. Find the operating point time t0 according to
Algorithm 2. If t0 < ∞ perform the model linearization
at this point and go to Step 3, otherwise go to Step 9.

Step 3. Perform the identification procedure based on the
algorithm described in Section 3 starting from t0 to t0 +
Tstart to obtain the MISO model parameters. Store suitable
parameters for each SISOk model.

Step 4. Perform simulation based on the obtained model
for the first two intervals starting from t0 to t0+Tstart+T ,
assuming zero initial condition. Start the state observer
procedure and calculate x(t0 + Tstart + T ). Store the
simulated values of the state variables as the initial
condition for the next interval x0 = x(t0 + Tstart + T ).
Set the interval counter p = 2.

Step 5. Calculate the performance index in the current
interval Ecurr according to (39). If Ecurr is lower than a
predefined threshold value tr2, do not change the current
model. Otherwise, find the best model parameters starting
from the k-th input for k = 1, . . . ,K as the initial model
according to Algorithm 3.

Step 6. Increment counter p. Perform forward simulation
for the current interval with the initial condition x0

starting from x(t0 + Tstart + T · (p− 2)) to x(t0 + Tstart +
T · (p− 1)).

Step 7. Update the model initial condition for the next
interval x0 = x(t0 + Tstart + T · (p − 1)) using the state
observer procedure.

Step 8. If p < pend return to Step 5, otherwise go to
Step 9.

Step 9. Finish the identification procedure.

Algorithm 2. Operating point time finding.

Require: convoluted output signals yi(t) = [y(i) ∗ φ](t),
where i = 0, . . . , n,
avg : the width of the interval in which the operating
point time is searched,
tr1: threshold value.

1: if
|∑t−avgt yi(t)|

avg < tr1 ∀i = 0, . . . , n then

2: t0 = t−
⌊

avg/2
⌋

3: else
4: t0 = ∞
5: end if
6: return t0 {Return the operating point time}

Algorithm 3. Parameters identification procedure.

Require: system input signals: u1(t), . . . , uK(t),
system output signal y(t), where
t ∈ [t0 + Tstart + T · (p− 2), t0 + Tstart + T · (p− 1)],
current state-space SISOk model,
initial condition vector x0,
initial performance index Ecurr,
current performance index Ei = 0.
while Ei < Ecurr do
• Calculate the simulated output signal ysk(t) for

the SISOk model as
ysk(t) = y(t) − ∑

j=1,...,K:j �=k ysj (t), where
ysj is the simulated output for the SISOj model.

• Identify the new SISOk model for the input
uk(t) and the output ysk(t) using the EEM
procedure.

• Simulate the new SISOk model response and
update ys.

• Update the quality factor Ei according to (39).
if Ei < Ecurr then

Update the current SISO models parameters
Ecurr = Ei

if k < K then
k = k + 1

else
k = 1

end if
else

break
end if

end while

It should be noted that in the case of Qk = 1 there
is only one time-shifted signal, while if Qk 	= 1 this
parameter corresponds to the central delay value. In both
the cases local linear constraints were found. Elements
of the vector η corresponding to the highest two powers
of the transfer function denominator were smaller than
the others, which allowed us to obtain larger values of
the model parameters for these powers. Analogously
the corresponding constraint ηk vector parameters for the
identification of single SISOk systems (7) have smaller
values.

In Table 2 coefficients of the previously described
model identification method are presented.

7.1. First experiment. The results of the first
experiment are shown in Figs. 6 and 7. The intervals in
which the changed models were applied for the system
output prediction for the first time are marked as below:

• B: the second interval in which both submodels
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Fig. 4. Historical data: the first set. Two upper charts present
the system inputs, while the third is the output.

Fig. 5. Historical data: the second set. Two upper charts present
the system inputs, while the third is the output.

parameters were changed according to the MISO
system identification;

• P : the interval in which the model parameters were
changed starting with the SISO1 submodel;

• T : the interval in which model parameters were
changed starting with the SISO2 submodel.

The identified models parameters are presented in
Tables 3–6 for the intervals in which they were applied.
Noticeable changes in the parameter values can be seen
during the simulation.

7.2. Second experiment. In the second experiment,
the model parameters were identified with the use of
multiple time-shifted input signals. Transport delay for
the mixture pressure model can be specified accurately,
while it is difficult to determine the delay between the
previous zone glass temperature and the current system
output. That is why four additional signals, shifted by 2 s
forward and backward are considered as the model inputs.
It made the overall number of the identified parameters
increase up to 11.

The experiment results are shown in Figs. 8 and
9. The intervals in which the model parameters were
changed are described as in the previous case. The
identified models parameters values are presented in

Tables 7–12. For the second submodel (the glass
temperature in the previous zone) parameters close to
the assumed delay value have greater absolute values,
which is consistent with predictions. Some of these
parameters have negative values. A similar problem
concerns the mixture pressure model for the second
data set. In the intervals 9–14, its denominator value
was negative. This was caused by very slight mixture
pressure changes in these intervals connected with sudden
changes of the measured output temperature. This
can be counter-intuitive, however acceptable from the
computational point of view, because each SISO model
(even unstable) represents only theoretical dynamics on
the short interval of the one control path whereas the
whole MISO system is the sum of K different SISO
models. In this case one can also try to use an adaptation
of the MFM by changing its parameters, as well as the
identification interval TID. Then one can repeat the
identification procedure for the last short interval. If this
does not change the unstable model, then the obtained
SISO model should not be used for the PID controller
tuning.

7.3. Summary. The obtained results of two
experiments for two data sets were compared. The
mean integrated square error of the difference between
the simulated output and the actual system output was
adopted as a performance index in each case. The
obtained results are presented in Table 13. The first
experiment concerns the model with single time-shifted
input signals, while the second is related to the use of
multiple time-shifted input signals.

The results of both the performed experiments allow
us to state that the obtained models gave sufficient
approximation of the real system output. In each case both
submodel parameters have changed along with the system

Table 1. MFM coefficients.
Parameter Value

SISO1 and SISO2 model orders n 4
Linear constraint vectors η, η1, η2 1, . . . , 0.15,

0.15, . . . , 1
Filtering function support width h 35 s

Loeb–Cahen functions parameters N , M 6, 7

Table 2. Identification procedure coefficients.
Parameter Value

Number of inputs K 2
Operating point finding parameter ‘avg’ 50

Operating point threshold tr1 5× 10−2

Model change threshold tr2 500
First interval width Tstart 500

Identification interval width T 250
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Fig. 6. Results for the first experiment (system with single
time-shifted inputs): the first data set.

Fig. 7. Results for the first experiment (system with single
time-shifted inputs): the second data set.

Table 3. Parameters values for SISO1 model (u1 → y1): the first experiment, the first data set (Fig. 4).
Parameter

Intervals a0 a1 a2 a3 a4 b0

1-8 1.31× 10−4 8.55× 10−3 0.41 0.15 3.71 2.08× 10−4

9-11 1.03× 10−5 8.71× 10−3 0.39 0.22 3.80 3.19× 10−5

Table 4. Parameters values for SISO2 model (u2 → y2): the first experiment, the first data set (Fig. 4).
Parameter

Intervals a0 a1 a2 a3 a4 b0

1-8 1.31× 10−4 8.55× 10−3 0.41 0.15 3.71 1.28× 10−4

9-11 4.99× 10−5 1.07× 10−2 0.38 0.25 3.78 5.28× 10−5

Table 5. Parameters values for SISO1 (u1 → y1): the first experiment, the second data set (Fig. 5).
Parameter

Intervals a0 a1 a2 a3 a4 b0

1-15 3.48× 10−4 1.31× 10−2 0.35 0.25 4.02 6.34× 10−4

16-20 3.50× 10−4 1.43× 10−2 0.33 0.30 4.09 3.55× 10−4

Table 6. Parameters values for SISO2 (u2 → y2): the first experiment, the second data set (Fig. 5).
Parameter

Intervals a0 a1 a2 a3 a4 b0

1-15 3.48× 10−4 1.31× 10−2 0.35 0.25 4.02 3.74× 10−4

16-20 7.98× 10−5 1.51× 10−2 0.32 0.32 4.09 8.72× 10−5
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Fig. 8. Results for the second experiment (system with mul-
tiple time-shifted inputs): the first data set.

Fig. 9. Results for the second experiment (system with mul-
tiple time-shifted inputs): the second data set.

Table 7. Parameters values for SISO1 model (u1 → y1): the second experiment, the first data set (Fig. 4).
Parameter

Intervals a0 a1 a2 a3 a4 b0

1–3 1.96× 10−4 9.79× 10−3 0.41 0.18 3.67 2.52× 10−4

4 3.74× 10−5 1.64× 10−2 0.34 0.31 4.00 9.52× 10−5

5–6 2.38× 10−3 7.16× 10−3 0.39 0.27 3.71 3.28× 10−3

7–11 6.05× 10−5 6.89× 10−3 0.39 0.20 3.84 1.25× 10−4

Table 8. Parameters a values for SISO2 model (u2 → y2): the second experiment, the first data set (Fig. 4).
Parameter

Intervals a0 a1 a2 a3 a4

1-3 1.96× 10−4 9.79× 10−3 0.41 0.18 3.67
4 2.50× 10−3 7.13× 10−3 0.39 0.30 3.69

5-6 2.67× 10−3 6.81× 10−3 0.40 0.24 3.66
7-11 1.01× 10−3 5.39× 10−3 0.37 0.17 3.98

Table 9. Parameters b values for SISO2 model (u2 → y2): the second experiment, the first data set (Fig. 4).
Parameter

Intervals b0 b1 b2 b3 b4

1-3 1.13× 10−2 −4.20× 10−2 5.37× 10−2 −2.32× 10−2 1.70× 10−4

4 4.10× 10−2 −7.96× 10−2 5.48× 10−2 −1.94× 10−2 6.26× 10−3

5-6 3.27× 10−2 -0.10 0.14 −8.36× 10−2 2.10× 10−2

7-11 9.86× 10−2 -0.44 0.75 -0.58 0.18

Table 10. Parameters values for SISO1 model (u1 → y1): the second experiment, the second data set (Fig. 5).
Parameter

Intervals a0 a1 a2 a3 a4 b0

1-8 4.93× 10−4 1.48× 10−2 0.35 0.29 3.91 7.49× 10−4

9-14 6.97× 10−5 1.65× 10−2 0.36 0.27 3.90 −8.43× 10−4

15-20 1.39× 10−3 1.56× 10−2 0.34 0.25 4.00 1.34× 10−3

working conditions. Especially in the case of molten glass
temperature significant changes in the previous forehearth
zone, it can be observed that the model parameters

are adjusted. These temperature fluctuations are often
connected with a variable glass pull rate, which means that
the mass of molten glass in the forehearth is changing.



An adaptive identification method based on the modulating functions technique . . . 755

Table 11. Parameters a values for SISO2 model (u2 → y2): the second experiment, the second data set (Fig. 5).
Parameter

Intervals a0 a1 a2 a3 a4

1-8 4.93× 10−4 1.48× 10−2 0.35 0.29 3.91
9-14 2.67× 10−4 1.52× 10−2 0.36 0.25 3.89

15-20 5.55× 10−5 2.24× 10−2 0.27 0.56 4.18

Table 12. Parameters b values for SISO2 model (u2 → y2): the second experiment, the second data set (Fig. 5).
Parameter

Intervals b0 b1 b2 b3 b4

1-8 3.28× 10−2 −9.33× 10−2 1.04× 10−1 −5.71× 10−2 1.42× 10−2

9-14 8.72× 10−3 6.19× 10−3 5.41× 10−2 6.02× 10−2 2.07× 10−2

15-20 −5.42× 10−2 0.18 -0.22 0.12 −2.02× 10−3

Table 13. Model identification results.
Output error

Model input signals Data set 1 Data set 2

single time-shifted 2.1032 1.9771
multiple time-shifted 2.1711 3.7148

The current pull rate is not measured in the analyzed
installation. It can be defined only in the case of stable
working conditions, so the model parameters cannot be
dependent on its value during the installation operating
point changes. Some offset between the actual system
trajectory and the simulated system output can be seen for
both experiments, but the obtained accuracy is sufficient
for control applications. This feature partly results from
the applied state observation method. The simulated
system output is used for obtaining the state estimate
in each simulation interval, starting from the first one.
This approach enables us to obtain a continuous simulated
trajectory. However, the modeling errors may increase in
the subsequent intervals.

Adopting additional time-shifted input signals in
the second experiment did not improve the overall
identification results, although the identified model
parameters were adjusted more often and the optimal
models were obtained noticeably earlier than in the first
case. This methodology could be beneficial in the case
of significant pull rate changes for the forehearth, because
it is the main factor affecting the variable transport delay
between the temperatures in the neighbouring forehearth
zones. This delay was relatively small for the analyzed
forehearth zone. This may result from the fact of installing
glass stirrers in it. The aforementioned devices force a
molten glass movement which results in faster mixing
of liquids. Adopting additional time-shifted inputs could
be reasonable for the other forehearth zones, which are
significantly longer and are not equipped with the stirrers.

8. Conclusions

The performed experiments allow us to state that the
proposed new method can be used for identification of the
model parameters for the glass forehearth installation and
makes it possible to predict the molten glass temperature
changes for a short period of time. This allows quickly
checking the PID controller parameters and, if necessary,
their adaptive correction.

For both approaches (the first with single input
signals delays and the second in which additional
time-shifted signals were added) results sufficiently
accurate to apply this method in the real control system
were obtained. Significant modifications of the standard
algorithm involving the MISO model decomposition to
separate SISO models with cooperation of EEM and
OEM gave satisfying results of identification. The
mean integrated square error remained in the range of
several percent in each experiment and the shape of
the simulated temperature trajectory was close to the
actual one. The models inaccuracies were noticeable
in both the cases, especially for the second data set,
but the proposed mechanism of updating the system
parameters leads to keeping up with the actual object
output over time. The models obtained with the use
of the proposed optimization algorithm based on the
Gauss–Seidel method can successfully reflect the glass
forehearth temperature changes. Based on the presented
research results, specialized software was developed, that
will be used in the local controller tuning system in the
technological line of the glass production process.
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