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We introduce a control strategy to solve the regulation control problem, from the perspective of trajectory planning, for
an uncertain 3D overhead crane. The proposed solution was developed based on an adaptive control approach that takes
advantage of the passivity properties found in this kind of systems. We use a trajectory planning approach to preserve the
accelerations and velocities inside of realistic ranges, to maintaining the payload movements as close as possible to the
origin. To this end, we carefully chose a suitable S-curve based on the Bezier spline, which allows us to efficiently handle
the load translation problem, considerably reducing the load oscillations. To perform the convergence analysis, we applied
the traditional Lyapunov theory, together with Barbalat’s lemma. We assess the effectiveness of our control strategy with
convincing numerical simulations.
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1. Introduction

Due to the vast range of actual applications, the control
of the overhead crane systems has attracted the attention
of several researchers in both mechanical engineering
and control communities. This heavy machinery has
a significant load capacity and high transportation
efficiency, and we widely use them, for instances, in
building sites, product lines, ports, to transport hazardous
materials, and so on. From the theoretical point of view,
these cranes belong to underactuated systems and are
not input-output linearizable, which make their control
a challenging problem. In practice, these cranes are
manually operated by experienced workers, having the
inconveniences of low efficiency and safety, long time
training for operators, and so on (Ramli et al., 2017).
We can overcome these inconveniences by providing this
kind of cranes with automatic control and secure means,
improving their performance and increase the safety of the
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people who work with and operate them.

In general, overhead crane systems mainly consist of
two parallel rails on which a girder slides perpendicularly
forwards and backward. There is a cart, mounted on the
girder, that moves left and right, and the payload hangs
from it using a rope. It is clear that the central control
task is bringing the payload from some initial position
to another desired final position keeping the oscillations
of the suspended payload mass as small as possible. At
present, we can find in the literature several techniques to
solve the position regulation and the tracking trajectories
problems applied to cranes. Due to the kind of tasks that
overhead cranes are used for, and despite their nonlinear
nature, we can assume that they behave as if they were
linear systems because the cart speed is low and the
rope angle is small. Additionally, we can easily adapt a
Luenberger observer to estimate unavailable velocities.

Consequently, several authors use linearized versions
of the crane model when developing control strategies.
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Therefore, PID and PD based controllers have been
widely used in this context. For instance, they have
been successfully used when combined with intelligent
techniques like neuron networks (Yu et al., 2014; Saeidi
et al., 2013; Suh et al., 2005; Hamid et al., 2016),
fuzzy logic (Smoczek, 2013; Liu et al., 2014), particle
swarms optimization (Fujioka et al., 2015; Hajdu and
Gáspár, 2016). Others widely used linear techniques are
the ones based on the linear quadratic regulator LQR
(Kim et al., 2011) and linear matrix inequalities (Sano
et al., 2011). The LQR method has also been used in
conjunction with genetic algorithms (Adeli et al., 2011).

On the nonlinear spectra, optimal control based
methods have been used, like model predictive control
(Wu et al., 2015; Jolevski and Bego, 2015; Käpernick and
Graichen, 2013; Khatamianfar and Savkin, 2014; Vukov
et al., 2012; Chen et al., 2016; Smoczek and Szpytko,
2017) and the linear quadratic Gaussian predictive
approach (Spathopoulos and Fragopoulos, 2004; 2001;
Smoczek, 2015). The other well established nonlinear
methods that have been applied due to their robustness
are adaptive control (Nguyen et al., 2015; Cho and Lee,
2008; Fang et al., 2012; Sun et al., 2014; 2015a; 2015b;
2016; Yang and Shen, 2011; Tar et al., 2010; Fujioka and
Singhose, 2015a; 2015b; Fujioka et al., 2015; Lee et al.,
2013) and sliding mode control.

Based on a second order sliding mode in conjunction
with partial feedback linearization, Kairuz et al. (2018)
present a robust strategy to solve the regulation problem
for a 3D underactuated crane. Results based on the same
methodology are presented by Vazquez et al. (2012;
2015). Solis et al. (2016) use a control strategy for a
Cartesian 3D crane based on a terminal optimal control
together with an integral sliding mode component (Chwa,
2017) develops a robust finite-time anti-swing tracking
control method for a 3D overhead crane system. A full
review of this topic is beyond the scope of this study;
however, we suggest the interested reader the survey by
Ramli et al. (2017).

In this work, motivated by the passivity properties
found in this kind of systems, and using the adaptive
control approach, we developed a control strategy to
solve the regulation problem for an underactuated 3D
overhead crane. In our solution, we used the trajectory
planning approach for two purposes: firstly, to preserve
in the actuated coordinate the physical restrictions,
like acceleration and velocity, within realistic ranges;
secondly, to maintain the payload movements as close
as possible to the origin. We made the corresponding
convergence analysis applying the traditional Lyapunov
theory, together with Barbalat’s lemma. To test the
effectiveness of our control strategy, we conducted
numerical simulations.

We organize the rest of this work as follows. In
Section 2, we present the 3D overhead crane dynamic

model, and we formulate the control problem we solve
in this study. In Section 3, we develop the corresponding
control approach. We present the numerical simulations
that allow us to assess the effectiveness of our control
strategy in Section 4, while we give the concluding
remarks in Section 5.

2. Dynamical model and problem statement

The dynamical model of the 3D overhead crane,
mentioned above and depicted in Fig. 1, is described in
its coordinate form by the following equation:

M(q)
..
q+ Fc(q,

.
q) +G(q) = U − Fd. (1)

The system state is q = [x, y, θx, θy]
T , where x,y ∈ R

are the cart positions in the horizontal plane and denote
its displacement in the x and y axes, respectively. The
angular positions of the rope projections in the plane XZ
are as follows: θx is the swing angle projected onto the
XZ-plane, and θy is the swing angle measured from the
XZ-plane. The system inertia matrix M(·) is defined as:1

M(q)

=

⎡
⎢⎢⎣

Mx +m 0 lmCxCy −lmSxSy

0 My +m 0 lmCy

lmCxCy 0 l2mC2
y 0

−lmSxSy lmCy 0 l2m

⎤
⎥⎥⎦ ,

where Fc(·) is referred to as the centripetal-Coriolis vector
force, and is defined as

Fc(q,
.
q)

=

⎡
⎢⎢⎢⎢⎣

−lmCySx

.

θ
2

x − 2lmCxSy

.

θx
.

θy − lmCySx

.

θ
2

y

−lmSy

.

θ
2

y

−2l2mSyCy

.

θx
.

θy

l2mSyCy

.

θ
2

x

⎤
⎥⎥⎥⎥⎦
.

The gravity force effect, denoted by G(·), is
expressed as

G(q) =
[
0 0 mglSxCy mglCxSy

]T
.

Finally, the control input vector U and the dissipative
force Fd are given by

U =
[
fx fy 0 0

]T
,

Fd =
[
dx

.
x+ fcx(

.
x) dy

.
x+ fcy(

.
y)

dθx
.

θx dθy
.

θy
]T

,

1We use the notation Cθ = cos θ and Sθ = cos θ, with θ =
{θx, θy}.
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where fx is the driving force of x motion, and fy is
that of y motion. The constant system parameters Mx

and My are respectively the components in directions x
and y of the crane mass and the equivalent masses of
the rotating parts, i.e., motors and their drive trains; m
is the load mass, g is the gravitational acceleration, l is
the rope length. dx, dy , dθx , and dθx denote the viscous
damping coefficients related with x, y, θx and θy motions,
respectively. Finally, fcx(

.
x) and fcy(

.
y) are the Coulomb

friction forces approximated by the following continuous
function:

fcw(
.
w) =

−βw
.
w√

.
w

2
+ α

, βw > 0, α > 0, α → 0 (2)

with w = {x, y} (cf. Gómez-Estern et al., 2004).

Remark 1. The rope from which the loads hangs from
the crane is a massless and rigid link, with positive and
constant length l. During the transportation process, the
swing angles of the load always remain in the interval θx,
θy ∈ I = (−π, π). That is, for simplicity, we are not
considering the dynamic in the direction of l. We chose
the Coulomb friction forces as an approximation to avoid
control discontinuities and the chattering phenomena.
Additionally, we pointed out that it is easy to see that
system (1) has a subset of stable equilibrium points, if
q = [x = ∗, y = ∗, θx = 0, θy = 0]T .

Motivation. In this work, we solve the regulation problem
for an uncertain damped overhead crane system, based
on a trajectory planning strategy through the actuated
coordinate. The main advantage of our solution consists
in maintaining the payload oscillations as close as pos-
sible to the origin, which is an attractive problem due to
their actual applications. Additionally, the solution that
we propose allows us to set a priori the load translation
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Fig. 1. Overhead crane.

task duration. To this end, we use as a trajectory reference
a Bézier function, which is, in fact, an off-line planning
motion. Using this reference, allows us to program the
admissible convergence period of time, and keep the
linear velocities (

.
x,

.
y) and the accelerations (

..
x,

..
y) within

an admissible set, and the oscillations of θx and θy within
a small vicinity of the origin. It is important to mention
that the Bézier function used, can be seen as a particular
case of the S-curves to solve the overhead crane motion
planning used by Fang et al. (2012) and Lee (2005).

Having described the model of the 3D overhead
crane, we proceed to establish the control goal of this
study.

Control problem. Consider the task of translating the
payload of a 3D overhead crane from some initial posi-
tion2

qi = (xi, yi, θx, θy)
T

to a desired final rest final position

qf = (xf , yf , 0, 0)
T

in some time interval [ti, tf ], with tf > ti ≥ 0, preserving
the following physical restrictions:

∣∣ .x(t)∣∣ < zv,
∣∣..x(t)∣∣ < za,∣∣ .y(ti)

∣∣ < zv,
∣∣..y(t)∣∣ < za

for all t ∈ [0,∞), where constants zi, with i = {v, a},
are known. The control objective consists in accomplish-
ing the above translation task in a given finite time inter-
val [ti, tf ], such that the payload swinging remains close
enough to zero, even when the physical system parameters
are unknown. Formally, we desire that

|x(t) − xf | ≤ δ1, |y(t)− yf | ≤ δ1,

|θx(t)| ≤ δ2, |θy(t)| ≤ δ2,

for t ∈ [ti, tf ] and limt→∞ q(t) = qf , with δ1 and δ2 suf-
ficiently small. The above is to be solved on the following
assumptions: (i) the whole state is always available; (ii)
θx, θy ∈ I = (−π, π); and (iii) all the unknown damping
coefficients are strictly positive, and the physical parame-
ters are unknown.

Assumptions and limitations. We assume that the
position (x, y) and its corresponding velocities are
available. Additionally, the controller does not have
any information about the physical parameters of the
3D crane. On the other hand, in our solution, the
velocity needs to be included in feedback, which in actual
applications is not available, and has to be estimated using
a suitable observation scheme. Besides, our solution
is not immune to external perturbations and unmodeled
dynamics; however, it can be overcome using an extended

2For simplicity, we write zi = z(ti) and zf = z(tf ).
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observer, like the ones used in active disturbance rejection
control (Zheng and Gao, 2010; Huang et al., 2014), or a
convenient slide mode based method (Davila et al., 2006;
Ferreira et al., 2010).

Some useful properties of the Euler–Lagrange sys-
tems.
A1: M(q) is a symmetric and positive definite matrix.
A2: The centripetal-Coriolis vector force admits the
following representation:

Fc(q,
.
q) = C(q,

.
q)

.
q,

where C satisfies the following condition:

.

M(q)− 2C(q,
.
q) = −(

.

M(q) − 2C(q,
.
q))T .

A3: The vector G(q) is a gradient. That is,

G(q) =
∂P (q)

∂q
,

where P (q) = mgl (1− CxCy).
A4: Given the energy function

E(q,
.
q) =

1

2

.
q
T
M(q)

.
q+ P (q),

if Fd = 0, we have that
.

E(q,
.
q) =

.
xfx +

.
yfy.

This implies

∫ t

0

(
.
xfx +

.
yfy) ds ≥ −E(0).

That is, if f = (fx, fy) and y = (
.
x,

.
y) are, respectively,

the input and output of the system, then it is a passive
system (a complete treatment of the properties of the
Euler–Lagrange systems can be found in the work of
Ortega et al. (2013)).

Trajectory planning. In order to solve the control
problem, we propose the convenient trajectories, referred
here as xd(t) and yd(t), in the form

xd(t) = xi + (xf − xi)λ(t, ti, tf ),

yd(t) = yi + (yf − yi)λ(t, ti, tf ),
(3)

where λ(t, ti, tf ) is a Bézier spline (Sira-Ramirez and
Agrawal, 2004) defined as

λ(t, ti, tf )

=

⎧
⎪⎪⎨
⎪⎪⎩

0 if t < ti,

Δ(t)
6∑

i=1

(−1)i+1riΔ
i−1(t) if ti ≤ t ≤ tf ,

1 if t > tf ,

(4)

where

r1 = 252, r2 = 1050, r3 = 1800,

r4 = 1575, r5 = 700, r6 = 126,

Δ(t) = (t− ti)/δT , with δT = tf − ti. It is easy to check
that this polynomial satisfies the following properties:
B1:

dk

dtk
λ(t, ti, tf )

∣∣∣∣
t=ti

= 0,

dk

dtk
λ(t, ti, tf )

∣∣∣∣
t=tf

= 0

(5)

for k = {0, 1, . . . , n}.
B2:

.

λ(t, ti, tf ) <
κ1

δT
=

2.61

tf − ti
,

..

λ(t, ti, tf ) <
κ2

δ2T
=

11.01

(tf − ti)2
.

(6)

B3:
.

λ(t, ti, tf) ∈ L2
2 and

..

λ(t, ti, tf ) ∈ L2
2. Hence,

.
xd(t),

.
yd(t) ∈ L2

2 and
..
xd(t),

..
yd(t) ∈ L2

2.
Finally, we say that xd(t) and yd(t) are admissible

trajectories if they satisfy the following inequalities:

max

{
κ1

δT
(xf − xi) ,

κ1

δT
(yf − yi)

}
< zv,

max

{
κ2

δ2T
(xf − xi) ,

κ2

δ2T
(yf − yi)

}
< za.

(7)

For a proof of these properties, see Appendix.

3. Control strategy

In this section, we derive a passivity-based controller,
in conjunction with an adaptive compensator to solve
the trajectories planning problem of a three-dimensional
overhead crane. To achieve this, we first propose the
following nonnegative energy function:

E(q,
.
q) =

1

2

.
q
T
M(q)

.
q+mgl(1− cos θx cos θy), (8)

where

q = [rx, ry, θx, θy]
T
,

rx = x− xd,

ry = y − yd.

(9)

Taking the time derivative of A2 along the
trajectories of (1) is easy to show, using properties B2 and
b3, that the following equality holds:

.

E =
.
rx(fx − fdx) +

.
ry(fy − fdy) +W0 +W1, (10)
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where

fdx = dx
.
x+ fcx(

.
x) + (Mx +m)

..
xd,

fdy = dx
.
y + fcy(

.
y) + (My +m)

..
yd,

W0 = −dθx
.

θ
2

x − dθy
.

θ
2

y,

W1 = −lmCxCy

.

θx
..
xd + lmSxSy

.

θy
..
xd

− lmCy

.

θy
..
yd.

(11)

As all the system parameters are unknown, except for
the parameter α associated with approximation functions
of the Coulomb friction force (see (2)), we can express
fdx and fdy as follows:

fdx = ΦT
x (t)
x, fdy = ΦT

y (t)
y,

where


x =
[
dx βx Mx +m

]T
,

Φx(t) =

[
.
x

.
x√

.
x
2
+ α

..
xd(t)

]T
,


y =
[
dy βy My +m

]T
,

Φy(t) =

[
.
y

.
y√

.
y
2
+ α

..
yd(t)

]T
.

(12)

Therefore, we propose the adaptive tracking
controller as

fx = −kprx − kd
.
rx − ΦT

x (t)
̂x, (13)

fy = −kpry − kd
.
ry − ΦT

y (t)
̂y, (14)

where kp and kd are positive control gains; 
̂x and 
̂y

are, respectively, the online estimates of 
x and 
y,
which evolve according to the following adaptive laws:

.


̂x = ΓΦx(t)rx, (15)

.


̂y = ΓΦy(t)ry (16)

with Γ being a diagonal, positive definite, update gain
matrix.

3.1. Stability analysis. Once we designed the control
law, we propose the required Lyapunov function to make
stability analysis assure convergence. To this end, we
introduce the main result of this study.

Proposition 1. Consider the system (1), in closed-loop
with (13) and (14), and the admissible trajectories xd

and yd, both defined in (3). Then the closed-loop system
asymptotically converges fast to a neighborhood of zero
and lim

t→∞q(t)=0, with the computable domain of attrac-

tion given by V (0) < 2mgl, with V defined below.

Proof. For simplicity, we assume that dθ = dθx = dθy >
0. Now, consider the following candidate Lyapunov
function:

V (t) = E(q,
.
q) +

kp
2

(
r2x + r2y

)
+

1

2

(
.
r
2
x +

.
r
2
y

)

+
1

2

(

̃T

x Γ
−1
̃x + 
̃T

y Γ
−1
̃y

)
,

(17)

where 
̃x = 
x − 
̂x and 
̃y = 
y − 
̂y . Computing
the time derivative of (17) and using (10) and the formulas
(13)–(16), is easy to see that

.

V (t) = −kd(
.
r
2
x +

.
r
2
y) +W0 +W1, (18)

where W0 and W1 were previously defined in (11). On the
other hand, we can note that W1 can be upper bounded by
the following inequality:

W1 ≤ lm

2γ

.

θ
2

x +
γlm

2

..
x
2
d +

lm

2γ

.

θ
2

y +
γlm

2

..
x
2
d +

lm

γ

..
y
2
d,

where γ > 0. Hence, selecting γ, such that

−dθ + lm/2γ > −ε,

with ε > 0, is easy to see that

W0 +W1 ≤ −ε
( .
θ
2

x +
.

θ
2

y

)
+

γlm

2

..
x
2
d +

lm

γ

..
y
2
d. (19)

Substituting (19) into (18), we obtain

.

V (t) ≤ −kd(
.
r
2
x +

.
r
2
y)− ε

( .
θ
2

x +
.

θ
2

y

)

+
γlm

2

..
x
2
d +

lm

γ

..
y
2
d.

(20)

Now, integrating both the sides of (20), we have

kd
∫ T

0
(
.
r
2
x +

.
r
2
y) + ε

∫ T

0

( .
θ
2

x +
.

θ
2

y

)
+ V (T )

≤ V (0) +
γlm

2

∫ T

0

..
x
2
d +

lm

γ

∫ T

0

..
y
2
d.

(21)

Since
..
xd(t),

..
yd(t) ∈ L2,

V (T ) ≤ V (0) +
γlm

2

∫ T

0

..
x
2
d +

lm

γ

∫ T

0

..
y
2
d < V < ∞.

Consequently, V (T ) ∈ L∞ and the set of signals:
{
q,

.
q, rx, ry,

.
rx,

.
ry, 
̃x, 
̃y

}
∈ L∞. (22)

Notice that if the above conditions are fulfilled, then
the following conditions are also fulfilled:

{
q,

.
q, x, y,

.
x,

.
y, 
̂x, 
̂y

} ∈ L∞.

From the definitions of q and
.
q , both given in (9), we

have that (q,
.
q) ∈ L∞. Therefore, according to the
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definitions of Φx(t) and Φy(t), both given in (12), we
conclude that (Φx(t),Φy(t)) ∈ L∞, implying that fx and
fy also belong to L∞ (see (13) and (14)). These facts

and Eqn. (1), allow us to conclude that (
..
q,

..
q) ∈ L∞.

Consequently, (
..
rx,

..
ry) ∈ L∞. Summarizing,

{..x, ..y,
..

θx,
..

θy,
..
rx,

..
ry} ∈ L∞. (23)

From the inequality (21), we have

kd

∫ T

0

(
.
r
2
x +

.
r
2
y) + ε

∫ T

0

( .
θ
2

x +
.

θ
2

y

) ≤ V ,

which implies that {
.

θx,
.

θy,
.
rx,

.
ry} ∈ L2

2. Now, as

{
.

θx,
.

θy,
.
rx,

.
ry} ∈ L2 ∩ L∞ and {

..

θx,
..

θy,
..
rx,

..
ry} ∈ L∞,

then, according to Barbalat’s lemma (Khalil, 2015), we
have that

lim
t→∞

.

θx(t) = 0, lim
t→∞

.

θy(t) = 0,

lim
t→∞

.
rx(t) = 0, lim

t→∞
.
ry(t) = 0.

(24)

From the facts above and the definition of
.
rx =

.
x−xd and

.
ry =

.
y−yd, we conclude that

.
x and

.
y converge

asymptotically to zero. Hence, Φx(t),Φy(t) → 0, as
long as t → ∞, implying that ΦT

x (t)
̂x,ΦT
y (t)
̂y → 0.

Therefore, using the definitions of fx and fy, respectively
given in (13) and (14), it is clear that

lim
t→∞fx = −kp lim

t→∞rx, lim
t→∞fy = −kp lim

t→∞ry.

(25)

Now, as the set of signals { .
x,

.
y,

.

θx,
.

θy} is well

defined, and {..x, ..y,
..

θx,
..

θy} ∈ L∞, once again applying
Barbalat’s lemma, we have that

lim
t→∞

..

θx(t) = 0, lim
t→∞

..

θy(t) = 0,

lim
t→∞

..
x(t) = 0. lim

t→∞
..
y(t) = 0. (26)

Based on (24)–(3.1), is easy to see that Eqn. (1) leads
to

[−kp lim
t→∞rx −kp lim

t→∞rx −mgl lim
t→∞SxCy

−mgl lim
t→∞CxSy

]
= 0.

Because we assume that (θx, θy) ∈ (−π/2, π/2), we
conclude that {x → xd, y → yd, θx → 0, θy → 0}.
Notice that the assumption (θx, θy) ∈ (−π/2, π/2) can
be assured if the set of initial conditions satisfies

V (0) < mgl.

�

4. Numerical simulations

In order to test the effectiveness of our control strategy,
we designed two hypothetical numerical experiments:

First experiment. The task consists in translating
the payload from the initial position given as qi =
[0.1m, 0.1m, 0.2 rad,−0.15 rad] with pi = 0, to the final
rest position qf = [1m, 1.1m, 0, 0] with pf = 0, within
the time interval [ti, tf ] = [0, 10 s], and an integration step
of order h = 10−4. For the set-up, we fixed the constant
physical parameters as follows:

Mx = 90 kg, My = 100 kg, m = 50 kg,

l = 1m, dx = 0.5, dy = 0.5,

dθx = 0.2, dθy = 0.15, βwx = 0.3,

βwy = 0.25, zv = 1m/s, za = 0.5m/s2,

with α = 5 × 10−3. We fixed the control gains as
kp = 50 and kd = 53; the matrix Γ = diag(1, 1, 2, 2).
Additionally, in this experiment, we made a behavior
comparison between our control strategy (OCS) and
the traditionally PD-based controller (PD), where the
trajectory planning for PD was not included. We
presented the obtained results in Fig. 2, where we can
see that OCS accomplishes the control task satisfactorily
within the programmed time interval.

It is worth of mentioning that, after 10 seconds,
positions x and y almost reach the desired rest position,
and angles θx and θy converge in the small vicinity of
±0.04 rad; conversely, the closed-loop response of the
traditional PD remains oscillating after 10 s. That is,
the position variables have an average error of ±0.12 m,
while the error of the angular variable θx and θy is on
the average ±0.1rad. From the comparison, we can see
that OCS outperforms the traditional PD. We show the
system velocities in Fig. 3. As we can see in this figure,
the velocity closed-loop responses of OCS are very close
to zero, that is |p| ≈ 10−3, while the corresponding
velocities for the closed-loop of PD are almost |p| ≈ 0.1.
Once again, from this figure, we can claim that OCS has a
much better performance than the PD controller. Finally,
we show the corresponding control action behavior in
Fig. 4, where we can see that OCS is ranging in |fx| ≈
0.01Nw and |fy| ≈ 0.05Nw, while the PD is ranging
in |fx| ≈ 0.5Nw and |fy| ≈ 1 Nw. We pointed
out that the OCS closed-loop response is able to follow
admissible trajectories, as we formally established in (7).
On the other hand, it is easy to see in the figures that the
PD closed-loop response exhibits an abrupt behavior in
comparison with OCS.

Second experiment. Here we carry out a numerical
comparison between our control strategy and a first-order
slide-mode control strategy (SMS), based on the
approaches found in the work of Qian and Yi (2016) or
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Sira-Ramirez and Agrawal (2004). To this end, we use
the same parameters set up as in the previous simulation,
except that we take the following physical parameters
values from the work of Kairuz et al. (2018): Mx = 3.3
kg, My = 1.5 kg, m = 1 kg, and l = 0.6m. To
make the experiment more interesting and challenging, we
add the following perturbation in the actuated coordinates:
δx = 0.2 sin(3t) cos(2t) and δy = 0.25 sin(3t) cos(5t).

To implement the first-order slide-mode controller,
we select the following two sliding surfaces:

σx = (z1 − κxf ) + 3z2 + 3z3 + z4,

σy = (w1 − κyf ) + 3w2 + 3w3 + w4,

where

z1 = θx + κx, z2 =
.

θx + κ
.
x,

z3 = −g

l
θx, z3 = −g

l

.

θx,

w1 = θy + κy, w2 =
.

θy + κ
.
y,

w3 = −g

l
θy, w4 = −g

l

.

θy,

with κ = 1/l. In our case, fx and fy are proposed, such
that

.
σx = −sign(σx), σy = −sign(σy).

We show the outcomes of this simulation in Fig. 5,
where we can see the evolution of coordinates x and y,
with their corresponding angles. As we expected, the
SMS behavior outperforms OCS. However, SMS exhibits
the undesirable chattering phenomena and needs more
information about the system structure and the knowledge
of the values of the parameters. In favor of OCS, we
can say that it solves the regulation problem in a practical
manner because the angles oscillate close to the origin due
to the presence of non-vanishing external perturbations.
Also, in this figure, we can see the control behavior of
both controllers, where once again it becomes evident the
presence of both chattering phenomena in SMS and the
nonvanishing perturbations in OCS.

Remark 2. Our control approach was designed
taking advantage of the passivity property found in the
kind of mechanical systems that we are dealing with.
Therefore, our controller is simple, and it only uses
the positions and their corresponding velocities. Even
more, due to its nature, our approach does not use any
angular information, unlike other control laws based on
sliding modes, which need information about the angular
variables and the knowledge of the physical parameters
(Qian and Yi, 2016; Kairuz et al., 2018). In the light of
these facts, our approach is less efficient and less robust
against external perturbations and unmodeled dynamics,
than the ones based on sliding modes. However, the
latter exhibit the chattering phenomena and need more
information than our approach.

Fig. 2. Comparison of the closed-loop response positions be-
tween OCS and a traditional PD.

Fig. 3. Comparison of the closed-loop response velocities be-
tween OCS and a traditional PD.

5. Conclusions

Based on trajectory planning, we have solved the
regulation problem for an uncertain 3D overhead crane.
To program the reference trajectory, we use a Bézier
function. This function can be considered as a particular
case of S-curves, which have been widely suggested by
the control community to solve the trajectory motion
planning problem due to some suitable properties. We
designed the control strategy taking advantage of the
passivity properties found in the kind of crane systems
we are dealing with, together with the traditional adaptive
control approach.

Off-line trajectory planning has two purposes. First,
it allows us to program the admissible period of time, in
which the control task has to be accomplished, preserving
the realistic physical restrictions in the linear velocities
and accelerations, while the payload angles always remain
inside of a small vicinity of the origin. Intuitively, this
means that the longer the translation time, the smaller the
payload oscillation angles. We made the corresponding
convergence analysis applying the traditional Lyapunov
theory, together with Barbalat’s lemma. To test the
effectiveness of our control strategy, we conducted
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Fig. 4. Comparison between the control actions of OCS and a
traditional PD.

Fig. 5. Comparison between the control actions of OCS and
SMS.

numerical simulations. We finish mentioning that
our control scheme could be improved if an extended
high-order observer were added to actively reject bounded
unknown perturbations, as it is done in ADRC.
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Appendix

Convergence analysis

Properties of the Bézier function. Note that

.

λ(t, ti, tf ) = −1260
(t− ti)

4(t− tf )
5

δ10T
, (A1)

..

λ(t, ti, tf ) = −1260
(t− ti)

3(9t− 5ti − 4tf )(t− tf )
4

δ10T
.

(A2)
Evidently, B1 is fulfilled. If we iteratively derive (A1) and
(A2), B1 always holds. From (A1) and (A2), we prove
that B2 also holds. That is, from (A2) we conclude that
either the maximum or the minimum of

.

λ is given by

9t− 5ti − 4tf = 0,

leading to

t1 =
5ti + 4tf

9
. (A3)

Now, substituting (A3) into (A1), we obtain

.

λ(t1, ti, tf ) =
112000000

43046721δT
≈ 2.61

δT
.

Similarly, it is easy to see that
...

λ(t, ti, tf ) = 0 implies that
the maximum or the minimum are located at

t2 =
10ti + (ti + tf )

√
105ti + 8tf

18
.

Substituting the above values of t2 into (A2), we get

..

λ(t2, ti, tf ) =
8
(
1415 + 8048

√
10
)

δ2T
≈ 11.01

δ2T
.

To prove property B3, we must note that
.

λ(t, ti, tf ) ≥ 0 for all t ∈ (ti, tf ). Therefore, we
have

∫ ∞

0

.

λ
2
(s, ti, tf ) ds

≤ κ1

δT

∫ tf

ti

.

λ(s, ti, tf ) ds =
κ1

δT
≤ ∞,

implying that
.

λ(t, ti, tf ) ∈ L2
2. In a similar fashion, we

can show that
..

λ(t, ti, tf ) ∈ L2
2. Notice that

.
xd(t) =

(xf − xi)
.

λ(t, ti, tf ) and
.
yd(t) = (xf − xi)

.

λ(t, ti, tf)
(see (3)). Accordingly, we can conclude that

.
xd(t),

.
yd(t)

∈ L2
2. Evidently,

..
xd(t),

..
yd(t) ∈ L2

2 also holds.
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