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The present work departs from an extended form of the classical multi-dimensional Gross–Pitaevskii equation, which
considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation.
It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check
that the generalized fractional model considered in this work also possesses conserved quantities, whence the development
of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-
difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross–
Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and
show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover,
we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to
show that the method is capable of preserving the total mass and the total energy of the generalized system.
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1. Introduction

In recent years, fractional derivatives have been
introduced to mathematical models in order to provide
more realistic descriptions of physical phenomena. For
instance, many fractional systems have been obtained
as continuous limits of discrete systems of particles
with long-range interactions (Tarasov, 2006; Tarasov
and Zaslavsky, 2008). However, independently of
that, fractional derivatives have been successfully used
in the theory of viscoelasticity (Koeller, 1984), the
theory of thermoelasticity (Povstenko, 2009), financial
problems under a continuous time frame (Scalas et al.,
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2000), self-similar protein dynamics (Glöckle and
Nonnenmacher, 1995) and quantum mechanics (Namias,
1980). Moreover, some distributed-order fractional
diffusion-wave equations are used in the modeling
of groundwater flow to and from wells (Su et al.,
2015; Pimenov et al., 2017), among other interesting
applications (Oprzędkiewicz et al., 2016).

From the mathematical point of view, the
investigation of fractional systems turns out to be a fruitful
(though challenging) task. Methods from mathematics
and computer science were employed to establish suitable
results on the existence and uniqueness of solutions of
fractional partial differential equations. As examples,
Morse’s theory was employed to establish existence
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results of fractional p-Laplacian problems (Iannizzotto
et al., 2016), state feedbacks were used to prove the
positivity of a class of nonlinear continuous-time models
(Kaczorek, 2015), a penalization method was employed
to show the concentration of solutions for a class of
multidimensional fractional elliptic equations (Alves
and Miyagaki, 2016), and even neural networks were
exploited to prove the existence and uniform stability
of complex-valued systems with delay (Rakkiyappan
et al., 2015).

As expected, the complexity of fractional problems
is considerably higher than that of integer-order
models, whence the need to design reliable numerical
techniques to approximate the solutions is pragmatically
justified. In this direction, the literature reports various
methods to approximate the solutions of fractional
systems. For example, some numerical methods were
proposed to solve fractional partial differential equations
(Macías-Díaz, 2018; 2019), the time-fractional diffusion
equation (Alikhanov, 2015), the fractional Schrödinger
equation in multiple spatial dimensions (Bhrawy and
Abdelkawy, 2015), the nonlinear fractional Korteweg-de
Vries–Burgers equation (El-Ajou et al., 2015), the
fractional FitzHugh–Nagumo monodomain model in two
spatial dimensions (Liu et al., 2015), distributed-order
time-fractional diffusion-wave equations in bounded
domains (Ye et al., 2015), time-fractional diffusion
equations with delay (Pimenov and Hendy, 2017) and
some Hamiltonian hyperbolic fractional differential
equations that generalize various well-known wave
equations from relativistic quantum mechanics
(Macías-Díaz, 2017).

It is important to point out that the development
of Hamiltonian finite-difference schemes is an important
research direction in numerical analysis. Many
nonlinear partial differential equations of integer order
are known to posses energy functionals that are
preserved under suitable boundary conditions, including
models like the Schrödinger, the sine-Gordon and
the nonlinear Klein–Gordon equations from relativistic
quantum mechanics, just to mention some wave equations
of physical relevance. Several groups of researchers
developed reliable numerical techniques to approximate
the solutions of these and other nonlinear conservative
systems as well as constant energy functionals associated
to them. Historically, the most notable contributions were
the energy-preserving finite-difference methodologies
proposed for the Schrödinger (Tang et al., 1996), the
sine-Gordon (Ben-Yu et al., 1986; Fei and Vázquez,
1991) and the nonlinear Klein–Gordon regimes (Strauss
and Vazquez, 1978). Those works were the sources of
motivation for the numerical investigation carried out in
many papers published later on (Furihata, 2001; Matsuo
and Furihata, 2001).

In the present work, we propose a numerical method

to solve a fractional Gross–Pitaevskii equation. The
continuous system has conserved quantities, whence
the development of conservative schemes to solve
it is justified. We propose a methodology based
on weighted-shifted Grünwald operators, and show
rigorously that the numerical model preserves discrete
forms of the mass and the energy of the system. The main
contribution of this work is summarized as the numerical
model (36) and (37). Moreover, as one of the most
important results of this manuscript, we propose a discrete
uniform Sobolev inequality in multiple dimensions. Using
this result, we have been able to provide optimal error
estimates, in the sense that the constraints do not depend
on quotients of the discrete norms. As a consequence,
we prove that the technique proposed in this work is
convergent and stable. Some numerical simulations show
that the discrete quantities of interest are preserved at each
time-step.

2. Mathematical model

Throughout this work, we let d = 2, 3, and consider
an open and bounded domain Ω ⊆ R

d. The symbols
β and γ will represent dimensionless and nonnegative
constants, and ϕ0 : Ω → C will denote a smooth function.
Meanwhile, V : Ω → R represents a differentiable
function, and ϕ : Ω × [0,∞) → C will be a sufficiently
smooth function satisfying the nonlinear fractional partial
differential equation

i
∂ϕ(x, t)

∂t
=
[
1
2 (−Δ)α/2 + V (x)− γLz

+β|ϕ(x, t)|2
]
ϕ(x, t),

(1)

for each (x, t) ∈ Ω× (0,∞), such that

{
ϕ(x, 0) = ϕ0(x), ∀x ∈ Ω,
ϕ(x, t) = 0, ∀(x, t) ∈ ∂Ω× [0,∞).

(2)

For compatibility reasons, we suppose that ϕ0(x) = 0 for
each x ∈ ∂Ω. On the other hand, the operator Lz is here
the z-component of the angular momentum, given by

Lz = −i(x∂y − y∂x) = −i∂θ. (3)

Various remarks are in order. To start with, it is
important to note that the system (1) is equivalent to
the original form of the classical Gross–Pitaevskii (GP)
system when α = 2. It is worth recalling that the classical
GP system is a mathematical model that preserves the total
mass and the total energy. The functions of mass and
energy associated with (1) take on the forms

M(ϕ(·, t)) = ‖ϕ(·, t)‖2L2 , (4)
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and

E(ϕ(·, t)) = 1
2‖(−Δ)α/4‖2L2 +

∫

Ω

[
V (x)|ϕ(x, t)|2

+F (|ϕ(x, t)|2)− γϕ(x, t)Lzϕ(x, t)
]
dx,

(5)
for each t ≥ 0, respectively, where z denotes the
conjugate for any z ∈ C, and

F (a) =
1

2
βa2, (6)

for each a ∈ R. As a consequence, M(ϕ(·, t)) = M(ϕ0)
and E(ϕ(·, t)) = E(ϕ0), for each t ≥ 0.

From the physical point of view, the GP equation
describes the ground state of a quantum system of
identical bosons using the Hartree–Fock approximation
and the pseudo-potential interaction model (Gross,
1961; Pitaevskii, 1961). This model has been used
to describe the single-particle wave-function in a
Bose–Einstein condensate, and it is similar in form to
the Ginzburg–Landau equation. It is worth mentioning
that the GP equation has been sometimes referred to
as a nonlinear Schrödinger equation. Indeed, the GP
equation has the form of the Schrödinger equation with
the addition of a nonlinear interaction term. In the
standard literature the GP equation is usually obtained
in the framework of the second quantization formalism.
However, it can also be derived in the context of statistical
physics, thus yielding a number of applications ranging
from the dynamics of a Bose–Einstein condensate to the
excitations of gas clouds (Raman et al., 1999).

The difficulty in solving and analyzing the solutions
of the integer-order GP model has open prospective
research directions in numerical analysis. For example,
an unconditional and optimal H1-error estimate of
a finite-difference scheme were proposed for the GP
equation with an angular momentum rotation term
(Wang et al., 2018), optimal l∞ error estimates of
finite-difference methods for the coupled GP equations
were derived (Wang and Zhao, 2014) and optimal
point-wise error estimates of a compact difference scheme
for the coupled GP equations in one dimension were
reported (Wang and Zhao, 2014), while other methods
were proposed to investigate nonlinear Schrödinger–GP
equations with a rotation term and nonlocal nonlinear
interactions (Antoine et al., 2016). Most of the reports
available in the literature investigate one-dimensional
forms of the GP equation, and the efficiency analysis
of those techniques heavily relies on the conservation
laws. As a consequence, the arguments are difficult
to extend to the higher-dimensional case. Moreover,
there are some efficient finite-difference schemes for
high-dimensional GP equations, but the error estimates
come with constraints on the grid ratios.

Recently, Wang et al. (2018) developed a different
approach to analyze a Crank–Nicolson method for a

GP equation. The approach relied on two different
techniques called ‘cut-off’ and ‘lifting’, along with the
use of a discrete Sobolev inequality. In this way, error
estimates in the H1-norm were established. The goal of
this work is to employ the same techniques to provide
unconstrained optimal error estimates for a discretization
of (1). To this end, we will propose a suitable discrete
fractional Sobolev-type inequality in higher dimensions,
and applications of this inequality will be used to establish
the stability and convergence of the numerical technique.
Moreover, we will show that the proposed scheme is
capable of preserving discrete forms of (4) and (5), in
agreement with the properties of the continuous model (1).

3. Numerical model

The numerical model proposed in this work is valid for
both the two- and the three-dimensional cases. However,
we will provide the description only for the case d = 2.
To this end, assume that Ω = (xL, xR)× (yL, yR) ⊆ R

2,
where xL < xR and yL < yR. We will approximate
solutions for t ∈ [0, T ], where 0 < T < Tmax and Tmax is
the maximal time for which the solution of (1) exists. For
convenience, let In = {1, . . . , n} and I̊n = In ∪ {0}, for
each n ∈ N.

Let N,M1,M2 ∈ N, and define the partition steps
τ = T/N , h1 = (xR−xL)/M1, h2 = (yR−yL)/M2 and
h = max{h1, h2}. For each n ∈ I̊N , assume that tn =
nτ . Moreover, let (xj , yk) = (xL + jh1, yL + kh2) for
each (j, k) ∈ T̊h, and define T̊h = I̊M1 × I̊M2 and Th =
IM1−1 × IM2−1. Let Wh be the space of all complex
functions defined on T̊h which vanish at the boundary of
the grid, that is, let

Wh =
{
u : T̊h → C |ujk = 0, ∀(j, k) /∈ Th

}
. (7)

Clearly, Wh ⊆ C
(M1+1)×(M2+1). Here, we use the

convention that uj,k = u(j, k), for each (j, k) ∈ T̊h.
Moreover, we will use the symbols φnj,k and ψn

j,k to
represent, respectively, the exact solution and a numerical
approximation to the exact solution of the problem (1)
at (xj , yk, tn), for each (j, k, n) ∈ T̊h × I̊N . In turn,
φn, ψn ∈ Wh will represent, respectively, the exact and
the numerical vector solutions at the time tn, for each
n ∈ I̊N . Finally, Vj,k represents the number V (xj , yk),
for each (j, k) ∈ Th.

Remark 1. For future reference, it is important to recall
that ‘τ ’ denotes the temporal step-size. On the other hand,
‘Th’ represents the set of pairs of indexes described above.

Let (un)Nn=0 ∈ Wh. We define the following linear
difference operators, for all (j, k, n) ∈ Th × IN−1:

δ+t u
n
j,k =

un+1
j,k − unj,k

τ
, (8)
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δtu
n
j,k =

un+1
j,k − un−1

j,k

2τ
, (9)

δ+x u
n
j,k =

unj+1,k − unj,k
h1

, (10)

δxu
n
j,k =

unj+1,k − unj−1,k

2h1
, (11)

δ+y u
n
j,k =

unj,k+1 − unj,k
h2

, (12)

δyu
n
j,k =

unj,k+1 − unj,k−1

2h2
, (13)

δ2xu
n
j,k =

unj+1,k − 2unj,k + un−1
j−1,k

h21
, (14)

δ2yu
n
j,k =

unj,k+1 − 2unj,k + un−1
j,k−1

h22
, (15)

Lh
zu

n
j,k = −i(xjδy − ykδx)u

n
j,k (16)

∇hu
n
j,k = (δ+x uj,k, δyu

n
j,k)

�, (17)

μ+
t u

n
j,k =

1

2
(un+1

j,k + unj,k). (18)

Definition 1. For any function f : R → R, any h > 0 and
any α ∈ (1, 2] we define the weighted-shifted Grünwald
difference of order α of f at the point x as

Δα
hf(x) =

1

2 cos(πα2 )
(LΔ

α
hf(x) +R Δα

hf(x)) , (19)

where LΔ
α
h and RΔ

α
h are, respectively, the left and the

right weighted-shifted Grünwald operators, given by

LΔ
α
hf(x) =

1

hα

∞∑
i=0

ωα
i f(x− (i+ 1)h), (20)

RΔ
α
hf(x) =

1

hα

∞∑
i=0

ωα
i f(x+ (i + 1)h), (21)

respectively. The coefficients (ωα
i )

∞
i=0 are defined by

⎧
⎪⎨
⎪⎩

ωα
0 =

α

2
gα0 ,

ωα
i =

α

2
gαi +

2− α

2
gαi−1, ∀i ∈ N.

(22)

Here,

⎧
⎪⎨
⎪⎩

gα0 = 1,

gαi = (1− α+ 1

i
)gαi−1, ∀i ∈ N.

(23)

The left and right weighted-shifted Grünwald
operators in Definition 1 approximate consistently the
left and right Riemann–Liouville fractional derivatives of
f ∈ L1(R) of order α at x, respectively, with the order
of consistency O(h2) (Tian et al., 2015). Moreover, for a
function f defined on a bounded domain B,

Δα
hf(xj) =

1

2hα cos(πα2 )

( ∞∑
i=0

ωα
i f(xj−i+1)

+

∞∑
i=0

ωα
i f(xj+i+1)

)

=
dαf(xj)

d|x|α +O(h2).

(24)

Let (un)Nn=0 ∈ Wh. Define the difference operators

δαxu
n
j,k =

1

2hα1 cos(πα2 )

(
j+1∑
l=0

ωα
l u

n
j−l+1,k

+

M1−j+1∑
l=0

ωα
l u

n
j+l+1,k

)
,

(25)

δαy u
n
j,k =

1

2hα2 cos(πα2 )

(
k+1∑
l=0

ωα
l u

n
j,k−l+1

+

M2−k+1∑
l=0

ωα
l u

n
j,k+l+1

)
,

(26)

for each (j, k, n) ∈ Th × IN−1. Moreover, let

δαhu
n
j,k = (δαx + δαy )u

n
j,k. (27)

Obviously, δαhu
n
j,k = (−Δ)α/2unj,k + O(h2). We define

〈·, ·〉 : Wh ×Wh → C and 〈·, ·〉∗ : Wh ×Wh → C by

〈u, v〉 = h1h2

M1−1∑
j=1

M2−1∑
k=1

uj,kvj,k, (28)

〈u, v〉∗ = h1h2

M1−1∑
j=0

M2−1∑
k=0

uj,kvj,k, (29)

for each u, v ∈ Wh.
For each u ∈ Wh, let

‖u‖2 = 〈u, u〉, (30)

‖δ+x u‖2 = 〈δ+x uj,k, δ+x uj,k〉∗, (31)

‖δ+y u‖2 = 〈δ+y uj,k, δ+y uj,k〉∗. (32)

‖u‖∞ = max{|uj,k| : (j, k) ∈ Th}. (33)

Moreover, set

‖w‖p =

⎛
⎝h1h2

M1−1∑
j=1

M2−1∑
k=1

|wj,k|p
⎞
⎠

1/p

, (34)
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‖∇hw‖2 = ‖δ+x u‖2 + ‖δ+y u‖2, (35)

for all w ∈ Wh. With this notation, the finite-difference
method to approximate the solutions of (1) is given by

iδ+t ψ
n
j,k =

(
1

2
δαh + Vj,k − γLh

z

)
μ+
t ψ

n
j,k

+ βμ+
t (|ψn

j,k|2ψn
j,k),

(36)

for each (j, k, n) ∈ Th × IN−1. We impose the condition

ψ0
j,k = ψ0(xj , yk), ∀(j, k) ∈ T̊h. (37)

It is easy to check that this finite-difference scheme
is an implicit method. Moreover, the extension to the
three-dimensional scenario is a straightforward task. In
the following sections we will establish that (36) is a
consistent and stable discretization of the model (1),
which converges to the solution with quadratic order.
Moreover, we will provide discrete forms of (4) and (5)
which, as the continuous counterparts, are invariant.

4. Auxiliary lemmas

The analysis of the finite-difference method (36) will
rely on the use of a suitable Sobolev inequality for the
two-dimensional scenario. To this end, assume that
h1, h2 ∈ R

+, and define xj = jh1 and yk = kh2, for all
j, k ∈ Z. Let W∗

h denote the set of all functions u : Z2 →
C, and assume that uj,k = u(j, k) for each (j, k) ∈ Z

2.
In this section, we define 〈·, ·〉 : W∗

h × W∗
h → C and

‖ · ‖ : W∗
h → R by

〈u, v〉 = h1h2
∑
j∈Z

∑
k∈Z

uj,kvj,k, (38)

‖u‖2 = 〈u, u〉, (39)

for each u, v ∈ W∗
h, whenever these numbers exist.

Moreover, let L2
h = {u ∈ W∗

h : ‖u‖2 <∞}.

Definition 2. For each u ∈ L2
h, define the semi-discrete

Fourier transform by

û(κ1, κ2) =
h1h2
2π

∑
k∈Z

uj,ke
−i(κ1xj+κ2yk), (40)

for each (κ1, κ2) ∈ R
2.

Notice now that the condition u ∈ L2
h guarantees

that û ∈ L2([−π/h, π/h] × [−π/h, π/h]). Moreover,
the inversion formula and Parseval’s identity in two
dimensions are respectively given by

uj,k =
1

2π

∫ π/h1

−π/h1

∫ π/h2

−π/h2

û(κ1, κ2)e
i(κ1xj ,κ2yk)dκ2dκ1,

(41)

〈u, v〉 =
∫ π/h1

−π/h1

∫ π/h2

−π/h2

û(κ1, κ2)v̂(κ1, κ2)dκ1dκ2,

(42)
for each (j, k) ∈ Z

2 and u, v ∈ L2
h.

Definition 3. Let 0 ≤ σ ≤ 1. Define the fractional
Sobolev norm ‖ · ‖Hσ : W∗

h → R and the semi-norm
| · |Hσ : W∗

h → R, respectively, by

‖u‖2Hσ =

∫ π/h1

−π/h1

∫ π/h2

−π/h2

(
1 + |κ1|2σ|κ2|2σ

)

· |û(κ1, κ2)|2dκ1dκ2,
(43)

|u|2Hσ =

∫ π/h1

−π/h1

∫ π/h2

−π/h2

(
|κ1|2σ + |κ2|2σ

)

· |û(κ1, κ2)|2dκ1dκ2.
(44)

Obviously, it readily follows that

‖u‖2Hσ = ‖u‖2 + |u|2Hσ , |u|2H0 = ‖u‖2, (45)

for each u ∈ W∗
h. The discrete Lp and L∞ norms on W∗

h

are defined in the classical ways.

Lemma 1. (Discrete uniform Sobolev inequality) For
every 1/2 < σ ≤ 1, there is a constant Cσ = C(σ) > 0
independent of h1, h2 > 0, such that ‖u‖L∞ ≤ Cσ‖u‖Hσ

for each u ∈ W∗
h.

Proof. The result readily follows after noting that

‖u‖L∞ ≤ 1

2π

∫ π/h1

−π/h1

∫ π/h2

−π/h2

|û(κ1, κ2)| dκ1dκ2

≤ 1

2π

√∫ π/h1

−π/h1

∫ π/h2

−π/h2

dκ1dκ2√
1 + |κ1κ2|2σ

·

√∫ π/h1

−π/h1

∫ π/h2

−π/h2

|û(κ1, κ2)| dκ1dκ2
(1 + |κ1κ2|2σ)−1/2

≤‖u‖Hσ

2π

√∫ π/h1

−π/h1

∫ π/h2

−π/h2

dz1dz2√
1 + |z1z2|2σ

(46)
hold for any u ∈ W∗

h, and that the coefficient of ‖u‖Hσ is
independent of h1 and h2. �

Lemma 2. Let u, v ∈ W∗
h.

(a) 〈δxu, v〉 = −〈u, δxv〉 and 〈δyu, v〉 = −〈u, δyv〉.

(b) 〈δ2xu, v〉 = −〈δ+x u, δ+x v〉, 〈δ2yu, v〉 = −〈δ+y u, δ+y v〉.

(c) For each 1 < α < 2 there is C > 0 which depends
on α, such that C|u|2

Hα/2 ≤ 〈δαhu, u〉 ≤ |u|2
Hα/2 .

(d) If 1 < α < 2 then 〈δαhu, v〉 ≤ |u|Hα/2 |v|Hα/2 .

Proof. Properties (a) and (b) are well known.

(c) First, observe that the one-dimensional case (Wang
et al., 2016) guarantees that

2α(1− α)

πα cos(πα2 )
(|κ1|α + |κ2|α)

≤ h−α
1 f(α, h1κ1) + h−α

2 f2(α, h2κ2)

≤ |κ1|α + |κ2|α,

(47)
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where

f(β, z) =
1

2 cos(πβ2 )

( ∞∑
l=0

ωβ
l e

i(l−1)z

+

∞∑
l=0

ωβ
l e

−i(l−1)z

)
,

(48)

for each β ∈ (1, 2] and z ∈ R. Multiplying all the
three terms of (47) by |û(κ1, κ2)|2, integrating over
all (κ1, κ2) ∈ [−π/h1, π/h1] × [−π/h2, π/h2] and
using Parseval’s identity in two dimensions, we note
that there exists C > 0 such that

C|u|2Hα/2 ≤
∫ π/h1

−π/h1

∫ π/h2

−π/h2

[
h−α
1 f(α, h1κ1)

+
f(α, h2κ2)

hα2

]
|û(κ1, κ2)|2 dκ1dκ2

= 〈δαhu, u〉 ≤ |u|2Hα/2 ,
(49)

where clearly C = 2απ−α(1− α)/ cos(πα/2).

The proof of (d) is similar to that of (c). �

Lemma 3. Ifα ∈ (1, 2] then there exists a linear operator
Λα
h : Wh → Wh such that 〈δαhu, v〉 = 〈Λα

hu,Λ
α
hv〉, for

each u, v ∈ Wh.

Proof. Let D = h−α
1 IM2−1⊗C+h−α

2 C̃⊗IM1−1, where
⊕ is the Kronecker product of matrices, IM is the identity
matrix of size M ×M for each M ∈ Z,

un =
(
un1,1, . . . , uM1−1,1,

un1,2, . . . , uM1−1,2, . . . ,

un1,M2−1, . . . , uM1−1,M2−1

)�
,

(50)

where, clearly, un ∈ C
(M1−1)×(M2−1),

C =
1

2 cos(πα2 )
(W +W�), (51)

C̃ =
1

2 cos(πα2 )
(W̃ + W̃�), (52)

and the matrices W,W̃ ∈ C
(M1−1)×(M1−1) are given by

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ωα
1 ωα

0 0 · · · 0
ωα
2 ωα

1 ωα
0 · · · 0

ωα
3 ωα

2 ωα
1 · · · 0

...
...

...
. . .

...
ωα
M1−2 ωα

M1−3 ωα
M1−4 · · · ωα

0

ωα
M1−1 ωα

M1−2 ωα
M1−3 · · · ωα

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

(53)

W̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ωα
1 ωα

0 0 · · · 0
ωα
2 ωα

1 ωα
0 · · · 0

ωα
3 ωα

2 ωα
1 · · · 0

...
...

...
. . .

...
ωα
M2−2 ωα

M2−3 ωα
M2−4 · · · ωα

0

ωα
M2−1 ωα

M2−2 ωα
M2−3 · · · ωα

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(54)
Obviously, C and C̃ are symmetric and positive definite
matrices. As a consequence, D is likewise symmetric
and positive definite. Thus, there exists a real orthogonal
matrix P and a real diagonal matrix A, such that

D = PAP� = L�L, (55)

where L = PA1/2P�. Finally, let now u, v ∈ Wh and
note that δαhu

n = (δαx + δαy )u
n = Dun. It follows that

〈δαhu, v〉 = 〈L�Lu, v〉 = 〈Lu,Lv〉, and the conclusion is
reached letting Λα

h = PA1/2P�. �
The following result will be a useful tool to prove the

invariance of some quantities associated to (36).

Lemma 4. (Bao and Cai, 2013) Let u, v ∈ Wh.

(a) 〈−δ2xu, v〉 = 〈δxu, δxv〉, and there existsC ≥ 0 such
that ‖u‖ ≤ C‖∇hu‖.

(b) 〈δαxu, u〉 ≤ 0 and 〈δαy u, u〉 ≤ 0, for each 1 < α < 2.

(c) 〈Lh
zu, v〉 = 〈v, Lh

zu〉.

(d) 1
2 (1 −

γ2

μ2 )‖∇hu‖2 ≤ E(u) ≤ C‖∇hu‖2, where

E(u) = 1
2‖∇hu‖2 + h1h2

M1−1∑
j=1

M2−1∑
k=1

[
Vj,k|uj,k|2

−γuj,kLh
zuj,k

]
.

(56)

5. Numerical properties

In the present section, we will prove that the numerical
scheme (36) has some associated quantities which are
preserved throughout the discrete time. Suppose that
(ψn)Nn=0 is a solution of (36). Let Q0

j,k = 0 and

F 0
j,k = 1

2β|ψ0
j,k|4, for each (j, k) ∈ T̊h. Suppose that

Qn, Fn ∈ Wh have been constructed for some n ∈ I̊N−1.
For each (j, k) ∈ T̊h, let

Sn
j,k = μ+

t

(
|ψn

j,k|2ψn
j,k

)
μ+
t ψ

n

j,k, (57)

and define

Qn+1
j,k = Qn

j,k + 2β ImSn
j,k, (58)

Fn+1
j,k = Fn

j,k + 2τβReSn
j,k. (59)
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Definition 4. We define respectively the total mass and
the total energy of (36) at the time tn by

Mn = ‖ψn‖2 − τ〈Qn, 1〉, (60)

En =
1

2
‖Λαψn‖2 + h1h2

M1−1∑
j=1

M2−1∑
k=1

[
Vj,k|ψn

j,k|2

+Fn
j,k − γψ

n

j,kL
h
zψ

n
j,k

]
,

(61)

for each n ∈ I̊N . Here, ‘1’ in (60) is the vector of the
same size of Qn, whose all components are equal to 1.

Theorem 1. (Invariant quantities) If (ψn)Nn=0 is a solution
of (36) then the quantities (60) and (61) are conserved.

Proof. Take the inner product of μ+
t ψ

n with (36), take
the imaginary part and then use Lemma 4 to obtain

δ+t ‖ψn‖2 =2β

M1−1∑
j=1

M2−1∑
k=1

ImSn
j,k

=〈Qn+1 −Qn, 1〉,

(62)

for each n ∈ I̊N−1. As a consequence, it follows that
Mn+1 = Mn, for each n ∈ I̊N−1. Calculate now the
inner product of 2δ+t ψ

n with the equations of (36), take
the real part, use Lemma 4 and rearrange terms to obtain

1

2
δ+t ‖Λα

hψ
n‖2 + h1h2

M1−1∑
j=1

M2−1∑
k=1

{
δ+t

(
Vj,k|ψn

j,k|2
)

−γδ+t
(
ψ
n

j,kL
h
zψ

n
j,k

)
+ 2βReSn

j,k

}

=
1

2
δ+t ‖Λα

hψ
n‖2 + h1h2

M1−1∑
j=1

M2−1∑
k=1

δ+t
[(
Vj,k|ψn

j,k|2
)

−γ
(
ψ
n

j,kL
h
zψ

n
j,k

)]
+ δ+t 〈Fn, 1〉 = 0.

(63)
Here, Λα

h is as in Lemma 3. As a conclusion, En+1 =

En for each n ∈ I̊N−1, as desired. Finally, note that the
conditionQ0 = 0 yields that Mn =M0 = ‖ψ0‖2, which
is a convenient expression for the constant mass. �

Example 1. We provide now a numerical proof that the
discrete model (36) is capable of preserving the discrete
mass and energy. The simulations were obtained using
an implementation of (36) in c©Matlab 8.5.0.197613
(R2015a) on a c©Hewlett-Packard 6005 Pro Microtower
computer with the Linux Mint 18 “Sylvia” Cinnamon
edition. Let T = 10, Ω = [−20, 20]× [−20, 20],

V (x) =
1

2
(x2 + y2), (64)

φ0 =
2√
π
(x+ iy)e−8(x2+y2), (65)

β = 1 and γ = 0.5. Computationally, let h = 0.001 and
τ = 0.0001. Figure 1 shows the graphs of Qn and En for
various values α. The graphs show that the total mass and
the total energy are approximately constant, confirming
the conclusion of Theorem 1. �

We establish next the stability and convergence
properties of the finite-difference method (36). Moreover,
as we mentioned in the introduction, we will establish
the optimal Hα/2-error estimate of the proposed scheme
without requiring additional conditions on the grid ratios.
To this end, we will assume the following:

A1. V ∈ C1(Ω) , and there exists μ > |γ| > 0 such that
V (x) ≥ 1

2μ
2|x|2, for all x ∈ Ω.

A2. The solution of (1) satisfies the condition φ ∈
W 4,∞([0, T ];L∞(Ω)) ∩W 3,∞([0, T ];W 2,∞(Ω)) ∩
W 1,∞([0, T ];W 4,∞(Ω) ∩H1

0 (Ω)).

Let ηn ∈ Wh be the vector of local truncation
errors of the method at the n-th temporal step, for each
n ∈ I̊N−1. More precisely, let

ηnj,k = iδ+t φ
n
j,k −

(
1

2
δαh + Vj,k − γLh

z

)
μ+
t φ

n
j,k

− βμ+
t (|φnj,k|2φnj,k),

(66)

for each (j, k, n) ∈ Th × IN−1. The following result
can be easily established using standard arguments with
Taylor series and a discrete Gronwall inequality.

Theorem 2. (Consistency) If Assumptions A1 and A2 are
satisfied, then there exists a constant C0 ≥ 0 independent
of τ and h, such that the following hold, for each n ∈
I̊N−1:

‖ηn‖ ≤ C0(τ
2 + h2), (67)

‖δ+t ηn‖ ≤ C0(τ
2 + h2). (68)

Let 1/2 < σ ≤ 1. Use of the discrete uniform
Sobolev inequality and Lemmas 2 and 3 show that there
is a constant C > 0 such that, for any u ∈ Wh,

‖u‖2L∞ ≤Cσ‖u‖2Hσ = Cσ

(
‖u‖2 + |u|2Hσ

)

≤Cσ

(
‖u‖2 + 1

C′ 〈δ
α
hu, u〉

)

≤C
(
‖u‖2 + ‖Λα

hu‖2
)
.

(69)

Here, C′ represents the constant of Lemma 2(c). This
remark will be employed to prove the convergence of (36).
Also, for each (j, k, n) ∈ T̊j × I̊N , let

εnj,k = φnj,k − ψn
j,k, (70)

The symbol ‘C’ will represent a nonnegative constant
whose value may change from place to place.
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Fig. 1. Graphs of the values of Qn (left column) and En (right column) versus tn obtained using the finite-difference method (36) with

T = 10, Ω = [−20, 20] × [−20, 20], β = 1, γ = 0.5 and V (x) = 1
2
(x2 + y2) and φ0 = 2√

π
(x + iy)e−8(x2+y2). Various

values of α were employed, namely, α = 2 (top row), α = 1.8 (middle row) and α = 1.6 (bottom row). The graphs show that
the discrete total mass Qn and total energy En are approximately constant, confirming the conclusion of Theorem 1.
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Theorem 3. (Convergence) Let Assumptions A1 and A2

hold. Then there exist h0, τ0 ∈ R
+ and a constant C > 0

such that ‖εn‖L∞ ≤ C(h2 + τ2), for all 0 < h ≤ h0,
0 < τ ≤ τ0.

Proof. Let ρ : R → [0, 1] be any function in C∞(R), with

ρ(s) =

{
1, ∀|s| ≤ 1,
0, ∀|s| ≥ 2.

(71)

Note thatM0 = ‖φ‖L∞ ∈ R, soB = (M0+1)2 > 0. Let
fB : [0,∞) → R be the globally Lipschitz function given
by fB(s) = sρ(s/B), for each s ∈ [0,∞), and assume
that ψ̂0 = ψ0. Define ψ̂n ∈ Wh by

iδ+t ψ̂
n
j,k =

(
1
2δ

α
h + Vj,k − γLh

z

)
μ+
t ψ̂

n
j,k

+ βμ+
t

[
fB(|ψ̂n

j,k|2)ψ̂n
j,k

]
,

(72)

for each (j, k, n) ∈ T̊h × I̊N−1. Using the facts that
fB(|φnj,k|2) = |φnj,k|2 for each (j, k, n) ∈ T̊h × I̊N−1, we
get that (72) approximates the partial differential equation
(1) with local truncation error given by (66). Let

ε̂n = φn − ψ̂n, (73)

for each n ∈ I̊N , and subtract (72) from (66).
After some algebraic reductions, we obtain

iδ+t ε̂
n
j,k =

(
1
2δ

α
h + Vj,k − γLh

z

)
μ+
t ε

n
j,k

+ ξn+1
j,k − ηnj,k,

(74)

for each (j, k, n) ∈ T̊h × I̊N−1. Here

ξnj,k =βμ+
t

[(
fB(|φnj,k|2)− fB(|ψ̂n

j,k|2
)
φnj,k

+fB(|ψn
j,k|2)ε̂nj,k

]
.

(75)

This and the global Lipschitz property of fB imply
that there exists a constant C1 ≥ 0 such that

|ξn+1
j,k | ≤ C1(|ε̂nj,k|+ |ε̂n+1

j,k |), (76)

for all (j, k, n) ∈ T̊h × I̊N−1. On the other hand,
computing the inner product of 2μ+

t ε̂
n with the vector

difference equations (72), taking then the imaginary part
and using Lemma 2, the Cauchy–Schwarz inequality and
the bound of |ξnj,k|, we readily obtain

‖ε̂n+1‖2 − ‖ε̂n+1‖2 ≤ τ
∣∣δ+t ‖ε̂n‖2

∣∣
= τ

∣∣Im〈ξn+1, ε̂n + ε̂n+1〉+ Im〈ηn, ε̂n + ε̂n+1〉
∣∣

≤ C0τ(τ
2 + h2)2 + C1τ

(
‖ε̂n‖2 + ‖ε̂n+1‖2

)
,

(77)

where C0 is the constant of Theorem 2. An application
of Gronwall’s inequality shows now that there exists a
constant C2 > 0 independent of τ and h, such that

‖ε̂n‖ ≤ C2(τ
2 + h2), (78)

for each n ∈ I̊N . On the other hand, using the
assumptions of the theorem and the definition of fB ,
calculating the inner product of τδ+t ε̂

n with (72) and
taking the real part, it follows that

1
2 Re〈δ

α
hμ

+
t ε̂

n, τδ+t ε̂
n〉

= Re〈ηn, τδ+t ε̂n〉+Re〈ξn+1, τδ+t ε̂
n〉

− Re〈V μ+
t ε̂

n, τδ+t ε̂
n〉,

(79)

for each n ∈ I̊N−1. But notice that

2Re〈δαhμ+
t ε̂

n, τδ+t ε̂
n〉 = ‖Λα

h ε̂
n+1‖2 − ‖Λα

h ε̂
n‖2, (80)

Re〈ηn, τδ+t ε̂n〉 ≤ 1
2‖η

n‖2 + ‖ε̂n+1‖2 + ‖ε̂n‖2

≤ C
[
(τ2 + h2)2 + ‖ε̂n+1‖2

+ ‖ε̂n‖2
]
,

(81)

Re〈ξn, τδ+t ε̂n〉 ≤
1

2
‖ξn‖2 + ‖ε̂n+1‖2 + ‖ε̂n‖2

≤C
(
‖ε̂n+1‖2 + ‖ε̂n‖2

)
,

(82)

Re〈V μ+
t ε̂

n, τδ+t ε̂
n〉 = 1

2V
(
‖ε̂n+1‖2 − ‖ε̂n‖2

)

≤C
(
‖ε̂n+1‖2 + ‖ε̂n‖2

)
.

(83)

The inequality (81) was obtained using the
Cauchy–Schwarz inequality and Theorem 2, while
(82) and (83) were derived using the Cauchy–Schwarz
inequality and the hypotheses. The expression (79) and
Gronwall’s inequality now yield

‖Λαε̂n‖ ≤ C(τ2 + h2), (84)

for some C ≥ 0 which is independent of τ and h. These
facts and (69) are used to reach the conclusion. �

Finally, the stability of (36) can be established using
arguments similar to those in the proof of Theorem 3.

6. Conclusions

In this work, we investigated numerically a fractional
extension of the Gross–Pitaevskii equation in multiple
spatial dimensions. The total mass and the total energy
of the system are quantities that are preserved throughout
time, whence the design of mass- and energy-preserving
finite-difference methods to solve the model is an
interesting problem in numerical mathematics. In the
present work, we propose numerical model to solve the
Gross–Pitaevskii equation together with discrete forms
of the total mass and the total energy, and prove
mathematically that those quantities are invariants.

To carry out the efficiency analysis, we proposed and
proved a multidimensional discrete form of the uniform
Sobolev inequality. Perhaps this is the most important
contribution of this manuscript. With such a result,
we were able to provide optimal bounds for the error
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associated to the method. The convergence and the
stability are proved thoroughly, and some simulations
show the capability of the method to preserve the invariant
quantities.
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