
Int. J. Appl. Math. Comput. Sci., 2022, Vol. 32, No. 1, 65–80
DOI: 10.34768/amcs-2022-0006

NON–STANDARD ANALYSIS REVISITED: AN EASY AXIOMATIC
PRESENTATION ORIENTED TOWARDS

NUMERICAL APPLICATIONS

VIERI BENCI a, MARCO COCOCCIONI b, LORENZO FIASCHI b,∗

aDepartment of Mathematics
University of Pisa

Via Filippo Buonarroti, 1/c, Pisa, 56122, Italy
e-mail: benci@dma.unipi.it

bDepartment of Information Engineering
University of Pisa

L.go Lucio Lazzarino, 1, Pisa, 56122, Italy
e-mail: marco.cococcioni@unipi.it,lorenzo.fiaschi@phd.unipi.it

Alpha-Theory was introduced in 1995 to provide a simplified version of Robinson’s non-standard analysis which overcomes
the technicalities of symbolic logic. The theory has been improved over the years, and recently it has been used also to
solve practical problems in a pure numerical way, thanks to the introduction of algorithmic numbers. In this paper, we
introduce Alpha-Theory using a novel axiomatic approach oriented towards real-world applications, to avoid the need to
master mathematical logic and model theory. To corroborate the strong link of this Alpha-Theory axiomatization and
scientific computations, we report numerical illustrative applications never carried out by means of non-standard numbers
within a computer, i.e., the computation of the eigenvalues of a non-Archimedean matrix, some computations related to
non-Archimedean Markov chains, and the Cholesky factorization of a non-Archimedean matrix. We also highlight the
differences between our numerical routines and pure symbolic approaches: as expected, the former scales better when the
dimension of the problem increases.

Keywords: Alpha-Theory, non-standard analysis, non-Archimedean analysis, algorithmic numbers, non-Archimedean sci-
entific computing.

1. Introduction

The purpose of this paper is to make a further contribution
to the applications of non-Archimedean mathematics
via numerical computations. In mathematics, non-
Archimedean refers to an ordered field which does not
satisfy the axiom of Archimedes (or, equivalently, that
lacks the Archimedean property). The latter states
(Deveau and Teismann, 2014) what follows.

Axiom of Archimedes. Let F be any totally ordered field.
Then, ∀x, y ∈ F, 0 < x < y, ∃n ∈ N : y < nx.

The axiom was called Archimedean by Otto Stolz,
since it appears as Axiom V of Archimedes’ On the
Sphere and Cylinder.

∗Corresponding author

Non-Archimedean analysis is the branch of
mathematics which deals with fields lacking Archimedes’
property; examples of non-Archimedean ordered
fields are the Levi-Civita field (Levi-Civita, 1892),
hyperreal numbers (Robinson, 1996), surreal numbers
(Conway, 2000), or the Dehn field (Dehn, 1900). A
very important branch of non-Archimedean analysis is
non-standard analysis (NSA), originally proposed in 1961
by Robinson, who published a milestone book about it
(Robinson, 1996). By now, there are many books on
NSA; we refer the interested reader to those by Benci and
Di Nasso (2018) or Keisler (1976) which are the books
closer to our approach.

Actually, our approach is based on Alpha-Theory
(AT) (Benci et al., 2006; Benci and Di Nasso, 2018) and
the theory of numerosity (Benci and Di Nasso, 2003):

mailto:benci@dma.unipi.it
mailto:marco.cococcioni@unipi.it;lorenzo.fiaschi@phd.unipi.it

66 V. Benci et al.

• AT is an introduction to non-standard analysis based
on the notion of an α-limit. The notion of the α-limit
is a version of the transfer principle easier to be used
by practitioners; in fact, roughly speaking, it could
be enunciated as follows: “every relation between se-
quences is preserved by the limit.”

• The theory of numerosity is strictly related to AT. It
is useful to give a meaning to some infinite numbers
such as the number α which is the numerosity of the
set of positive natural numbers and it can be useful in
some applications (e.g., see Benci et al., 2018).

To improve the accessibility to the topic, in Section 2
we present Alpha-Theory in an axiomatic way, along
with some basic examples. Then, in Section 3 we
give a glimpse at the differences existing between field
theory and its actual implementation within a computer,
while in Section 4 we propose a way to numerically
encode hyperreal numbers in a machine, similarly to what
has been done for the reals with IEEE floating point
numbers. Finally, in Section 5 we present some possible
computations using hyperreal numbers. Section 6 and 7
contains some related works and concluding remarks.

2. Alpha-Theory

The essence of any axiomatic approach to non-standard
fields relies on two points: (i) the existence of at least
one infinite (or infinitesimal) number and its algebraic
properties; (ii) the transfer principle. Actually, they
correspond to Axioms 2 and 3 shown later in the section,
respectively.

Axiom 1. There exists an ordered field of E ⊇ R whose
numbers are called α-Euclidean numbers.

In the following we will refer to E as to the
α-Euclidean line.

Before introducing Axiom 2 and for a better
reasoning, the following definition is needed. It introduces
a partitioning of the set E into three categories: infinite,
finite and infinitesimal numbers.

Definition 1. If ξ ∈ E, then

• ξ is infinite ⇐⇒ ∀n ∈ N, |ξ| > n,

• ξ is finite ⇐⇒ ∃n ∈ N , 1n < |ξ| < n,

• ξ is infinitesimal ⇐⇒ ∀n ∈ N, |ξ| < 1
n .

Let V (N) denote the superstructure on N, namely,

V (N) =

∞⋃

i=0

Vi(N),

where
V0(N) = N

and
Vi+1(N) = Vi(N) ∪ P(Vi(N));

we set

U := {X ∈ V (N) |X is countable}.

Axiom 2. There exists a function num : U → E which
satisfies the following properties:

• if A is finite, num(A) = |A| (here | · | denotes the
cardinality of a set),

• num(A) < num(B) if A ⊂ B,

• num(A∪B) = num(A) + num(B)− num(A∩B),

• num(A×B) = num(A) · num(B),

• α = num(N).

Axiom 2 introduces the infinite number α and states
that it can be manipulated as any other finite real number
using field rules such as commutativity, associativity, etc.
As an example, the following relations hold true within
AT:

0 <
1

α
= α−1 < α0 = 1 < α1 = α < (α+ 1),

α · (α+ 2) = α2 + 2α,

−10.0α2 + 16.0 + 42.0η2

5.0α2 + 7.0
= −2.0 + 6.0η2,

where we have set

η :=
1

α
.

Hence η is an infinitesimal, being the reciprocal of α.
Now we will introduce axiomatically the notion of the
α-limit:

Axiom 3. Every sequence ϕ : N → R has a unique α-
limit, denoted by limn↑α ϕ(n), which satisfies the follow-
ing properties:

1. if ξ ∈ E, then there exists a sequence ϕ : N → R

such that
ξ = lim

n↑α
ϕ(n);

2. if ϕ(n) = n, then

lim
n↑α

ϕ(n) = α;

3. if, eventually, ϕ(n) ≥ ψ(n) (namely, ∃n0 ∈ N such
that ∀n ≥ n0, ϕ(n) ≥ ψ(n)), then

lim
n↑α

ϕ(n) ≥ lim
n↑α

ψ(n)

Non-standard analysis revisited: An easy axiomatic presentation . . . 67

4. for any sequences ϕ and ψ

lim
n↑α

ϕ(n) + lim
n↑α

ψ(n) = lim
n↑α

(ϕ(n) + ψ(n)) ,

lim
n↑α

ϕ(n) · lim
n↑α

ψ(n) = lim
n↑α

(ϕ(n) · ψ(n)) .

Notice that in order to distinguish the usual limit of
a sequence (which we will call the Cauchy limit) from
the α-limit, we use the symbols “n → α” and “n ↑ α”,
respectively. Points 1–3 are not surprising since we expect
them to be satisfied by any notion of limit provided the
target space is equipped with a reasonable topology. In
Axiom 3, the new (and, maybe for someone, surprising)
fact is that every net has an α-limit. Nevertheless,
Axiom 3 is not contradictory and a model for it can be
constructed in ZFC (cf. Benci and Di Nasso, 2018).

The first consequence of the α-limit is that every real
function f : R → R can be extended to a function f∗ :
E → E by setting

f∗
(
lim
n↑α

ϕ(n)

)
= lim

n↑α
f (ϕ(n)) .

It is not difficult to prove that this is a good definition, that
is, f∗(ξ) does not depend on the sequence ϕ(n) which
defines ξ. In what follows, when no ambiguity is possible,
we will omit the symbol “∗” and, therefore, f and f∗ will
be denoted by the same symbol.

As we remarked in the introduction, Axiom 3 can
be seen as a weak form of the Transfer Principle. For
example, suppose that you want to transfer the following
property of trigonometric functions:

sin (2x) = 2 cosx · sinx
to their extension overE. If we take a generic point ξ ∈ E,
by Axiom 3 there exists a sequence ϕ such that

ξ = lim
n↑α

ϕ(n).

Since ϕ(n) ∈ R, we have that

sin (2ϕ(n)) = 2 cosϕ(n) · sinϕ(n).
We can take the α-limit of both the sides

lim
n↑α

sin (2ϕ(n)) = lim
n↑α

[2 cosϕ(n) · sinϕ(n)]

and use the properties of the α-limit to get

lim
n↑α

sin (2ξ) = lim
n↑α

[2 cos ξ · sin ξ] .

Now, let us see a basic theorem in non-Archimedean
mathematics. The theorem states that any non-infinite
hyper-real number is infinitely close to only one real
number, namely its standard part, and there exists a
function which associates the former to the latter. Such
a function is defined from all the non-infinite values of E
(denoted Efin) to R and it is denoted by st.

Theorem 1. (Standard part) There exists a function st :
Efin → R satisfying

• x ∼ y ⇒ st(x) = st(y),

• st(st(x)) = st(x),

where ∼ stands for “is infinitely close to”, i.e., x−y is an
infinitesimal number.

Proof. See, for example, the work of Keisler (1976) or
Benci and Di Nasso (2018) .

As an example, the following equations hold true:

st(2.1− 5η) = 2.1, st(−3) = −3,

st(−
√
2η2 + πη3) = 0, st(α) = �.

Put in another way, the standard part function maps any
number into its closest real.

The standard part of a number is related to the
Cauchy limit in the following way. If a sequence ϕ(n)
admits the Cauchy limit, the relation with the α-limit is
given by the following identity:

lim
n→α

ϕ(n) = st

(
lim
n↑α

ϕ(n)

)
. (1)

Another important relation between the two limits is the
following: if

lim
n↑α

ϕ(n) = ξ is not infinite,

then there exists a subsequence ϕ(nk) of ϕ(n) such that

lim
k→∞

ϕ(nk) = st(ξ).

For the consistence of the axioms and the proofs of
the facts claimed in this section, we refer to Benci and
Di Nasso (2018).

2.1. Is α even or odd? And other similar questions.
Until now, we said almost nothing about the number α
except that it is a positive infinite number. Therefore,
it is reasonable that one may wonder about additional
properties of α, e.g., whether it is even or odd. The answer
can be quite surprising at first sight, but it is perfectly
consistent: it can be either one or the other indifferently,
namely this statement cannot be deduced by Axioms 1–3.
In fact, there are many models which satisfy them. Most
of these questions are irrelevant for the applications and,
in particular, for the applications of this paper. However,
sometimes it can be useful to add some other axioms
which enrich the theory. For example, Benci and Di Nasso
(2018), it is proved that the theory can be implemented to
get the following result:

Theorem 2. The number α satisfies the following prop-
erties:

68 V. Benci et al.

• DIVISIBILITY PROPERTY: For every k ∈ N, the
number α is a multiple of k and the numerosity of
the set of multiples of k:

num({k, 2k, 3k, . . . , nk, . . . }) = α

k
.

• ROOT PROPERTY: For every k ∈ N, the number α
is a k-th power and the numerosity of the set of k-th
powers:

num({1k, 2k, 3k, . . . , nk, . . . }) = k
√
α.

• POWER PROPERTY: If we set Pfin(A) = {F ∈
P(A) | F is a finite set}, then

num(Pfin(N
+)) = 2α.

• INTEGER NUMBERS PROPERTY:

num(Z) = 2α+ 1.

• RATIONAL NUMBERS PROPERTY: For every q ∈ Q

num(Q) = 2α2 + 1

and

num((q, q + 1] ∩Q) = num((0, 1] ∩Q) = α.

Proof. See the work of Benci and Di Nasso (2018,
Sections 16.6 and 16.7).

3. Concept of the algorithmic field

R is a field and it is the reference number set
for the majority of the theories about data science,
machine learning, market analysis, etc. However, when
considering problems from a numerical perspective, one
immediately realizes that R might not be suitable for
computation. Roughly speaking, it is “too rich” to
be entirely managed by a finite machine. In fact,
any computation between real numbers is carried out
using floating point numbers, either in single or double
precision. Floating point numbers are a finite-dimension
encoding of real numbers and are defined in the IEEE 754
standard. They provide a very accurate approximation of
a subset of R which is used in the majority of practical
studies.

The set of all the numbers which can be represented
exactly within a machine will be improperly referred to
as the algorithmic field, stressing that those are the only
numbers which are actually being crunched by algorithms
and hardware accelerators. Thus they are a denumerable
subset of real numbers or hyperreal numbers. Notice that
even if the algorithmic field is not closed with respect to
any algebraic operation, even if it is a discrete set, and
even if computations doing on it may suffer by numerical
instabilities, it turns out to work well for a large class of
practical problems. Table 1 provides the mathematical
fields and the algorithmic fields considered in this work.

3.1. Importance of fixed-length representations.
In symbolic computations, such as those performed
by Wolfram Mathematica R©, the inner representation of
numbers is often variable-size, which typically slows the
computations a lot. Even worse, when using iterative
schemes at each iteration the inner representation of
numbers typically grows in length, which makes the
program slower and slower as it runs. On the contrary,
working with fixed-length representations typically leads
to faster code, because from the beginning to the end
of the execution each number has always the same fixed
length (which means it always requires the same time to
be processed, it avoids checking its length at run-time in
order to execute correct and in-bounds operations, etc).
In addition, fixed-length representations are the only ones
suitable for building hardware accelerators.

As an example, the floating point representation
of real numbers in our computers (IEEE 754 standard
recalled above) enjoys the hardware speedup of its
operations thanks to the FPU co-processor most CPUs are
equipped with (to be precise, modern CPUs have more
than one FPU accelerator on each core). In the same spirit,
in the next section we present the concept of algorithmic
numbers (Benci and Cococcioni, 2020), a fixed-length
representation for non-Archimedean numbers. In the near
future, hardware accelerators for speeding up operations
between them could be easily built, since there are no
technical difficulties preventing it.

4. Algorithmic numbers

Algorithmic numbers (ANs) were introduced by Benci
and Cococcioni (2020). They consist of a subset of
the numbers of E which can be better standardized,
and, therefore, easily manipulated on a computer. The
definition of the AN, which follows, is inspired by the
work of Levi-Civita (1892) and leverages on the concept
of monosemium, which can be identified with a number of
the form rαp, where r ∈ R and p ∈ Q.

Definition 2. (Algorithmic number) A number ξ ∈ E is
called algorithmic if it can be represented as a finite sum
of monosemia, namely,

ξ =
�∑

k=0

rkα
sk ; rk ∈ R, sk ∈ Q; sk > sk+1. (2)

Moreover, one can always represent it in the following
form, called “normal form”:

ξ = αpP
(
η

1
m

)
,

where
η := α−1,

p ∈ Q, m ∈ N and P (x) is a polynomial with real
coefficients such that P (0) �= 0. A parallelism with the

Non-standard analysis revisited: An easy axiomatic presentation . . . 69

Table 1. Mathematical fields vs. algorithmic fields.

Mathematical fields Algorithmic fields
Real numbers R R̂ (approximated, not always associative, etc.)

Non-standard numbers E Ê (approximated, not always associative, etc.)

scientific notation for real numbers may help in suggesting
the uniqueness of the representation. As an example,
consider the number 1.3675e3: the term e3 means 103 and
plays the same role as αp, while the number 1.3675 can
be represented by a polynomial of non-positive powers
of 10, i.e., 1 · 100 + 3 · 10−1 + 6 · 10−2 + Since a
polynomial in η is a polynomial in non-positive powers of
α, the parallelism is completed.

In particular, two issues rise when one tries to deal
with ANs within a computer:

• the inverse of an AN is not always an AN, e.g.,

(α+ 1)
−1 is not an AN;

• they have a variable length coding, implying the
problems discussed in Section 3.

To overcome these drawbacks, a notion of truncation is
needed.

The truncation of a generic AN ξ affects both the
number of monosomic used to build it and the fixed
length representation of the coefficients ri, i = 0, . . . , �.
Nevertheless, the second topic is negligible since there
is abundant literature about it, and a very efficient
mechanism to handle it already exists. Concerning the
first one, it reduces to the truncation of the polynomial
P (·) of its normal form. To tackle it, it is enough to define
the following truncation function applied to a generic
polynomial P (x) = p0x

z0 + · · · + pmx
zm , zi−1 < zi,

i = 1, . . . , m:

trn [P (x)] =

{
P (x), n ≥ m,

p0x
z0 + · · ·+ pnx

zn , n < m.

The encoding of an AN truncated at n is referred to as
ANn. For example, if the machine precision allows one to
set n at most to 3, then the encoding used for representing
ANs in an experiment on that machine is AN3.

4.1. Bounded ANs: A special case of ANs. There
is a particular subset of ANs which deserves particular
attention: bounded algorithmic numbers (BANs). A BAN
is defined by the normal form αpP (η), where p ∈ Z and
P (0) �= 0. Below, we report the approximated algebraic
operations between truncated approximations of two
BANs, namely ξ = αpP (η) and ζ = αqQ(η). Notice
that the order of truncation n is an arbitrary natural value
specified at compile time. In general, the user tunes
it taking into consideration several aspects, e.g., the

required precision of the computations, the computation
time available, the architectural properties of the machine
and so on.

Sum (assuming p ≥ q):

ξ + ζ = αpP (η) + αp
(
Q(η)ηp−q

)

= αp
(
P (η) + trn

[
Q(η)ηp−q

])

Product:
ξζ = αp+qtrn [P (η) ·Q(η)]

Division: Rewriting ζ as

ζ = αq

(
q0 +

n∑

k=1

qkη
k

)
= q0α

q (1− ε) ,

where

ε = −
n∑

k=1

qk
q0
ηk,

we get the definition of the division

ξ

ζ
= αp−qtrn

[
P (η)

q0

(
1 + ε+ ε2 + . . .+ εn

)]

= αp−q

(
P (η)

q0
+ trn

[
ε
P (η)

q0

]
+ . . .

+ trn

[
εn
Pn (η)

q0

])
.

Further details about these and other operations, such
as the square root of a generic AN, can be found in
the original work (Benci and Cococcioni, 2020), while
in the remainder of this section we focus more on some
delicate and technical aspects of evaluating transcendental
functions of ANs.

4.2. How to compute trigonometric functions on ANs.
The main ingredients to compute trigonometric functions
involving ANs are Taylor series and trigonometric
identities. For instance, consider trigonometric functions
of monosemia such as 3η. If we work in ANn, one
can immediately make use of the Taylor expansion of the
cosine in a neighborhood of zero truncated to the order n.
For example, if n = 3, we have that

cos(3η) = 1− 1

2
(3η)

2
+O(η4)

� 1− 1

2
(3η)2 = 1− 9

2
η2.

70 V. Benci et al.

The issue to deal with multiple monosomic rather
than just one comes quite straightforwardly with the
help of simple trigonometric identities, such as the sine
of the sum of two angles. They allow us to rewrite
trigonometric functions of generic ANs as sums and
products of trigonometric functions of monosemia. As
an example, consider computation of the sine of 5 − 3η.
By means of the trigonometric identity sin(x + y) =
sinx cos y − sin y cosx, we can rewrite the computation
as

sin(5 − 3η) = sin 5 cos(3η)− sin(3η) cos 5

and then apply the Taylor series approximation as done
before, obtaining

sin(5− 3η) � sin 5

(
1− 1

2
(3η)

2

)

−
(
3η − 1

3!
(3η)3

)
cos 5

= sin 5− 3η cos 5

− 9

2
η2 sin 5 +

9

2
η3 cos 5,

where “�” means that the numbers are approximated up
to the third order. Finally, we remark that it is not possible
to compute sin(α) or cos(α) since their values are not
determined by Axioms 1–3. Consequently, we can start
the same discussion as in Section 2.1.

4.3. How to compute exponential and logarithmic
functions. In the case of exponential and logarithmic
functions, one can say something more than about
trigonometric functions. As one can easily imagine, the
Taylor approximation is still a viable approach when it
converges. For instance, the following approximations are
true:

e1−η � 8

3
− 5

2
η + η2 − 1

6
η3,

ln(1 + 2η) � 2η − 2η2 +
8

3
η3.

Now, let us examine the numerical representation of
infinite values such as e2α+3 or ln η. To do that, one needs
to exit from the set of ANs and to work in a wider one,
indicated with V̂.

A rigorous discussion can be found in the work of
Benci and Cococcioni (2020), while for our practical
purposes less formalism is needed.

The idea is to represent such transcendental infinite
numbers as sum of monosemia, similarly to Eqn. (2)
except that the exponents are taken not in Q but in a
vector space V over Q. To do this, one only requires the
definition of a proper basis V . For the case e2α+3 it is
enough to set

V = {β0, β1} =
{
1,

α

lnα

}
(3)

and to define V as the set of all the non-standard numbers
having the powers ofα in the space spanned by V . Indeed,
we have

e2α+3 = e3e2α = e3αlogα e2α = e3α2α logα e

= e3α2α ln e
lnα = e3α2 α

lnα = e3α2β1

and more generally,

e2α+3 + 5α = e3e2α + 5α = e3α2β1 + 5αβ0 ,

2α = eln 2α = eln(2)α = αln(2)β1 .

The case of ln η is quite similar but not
straightforward, since it requires to pass through
lnα. To numerically embed it, one can use the basis

V =
{
β−1, β0

}
=

{
ln lnα

lnα
, 1

}
(4)

obtaining the identity

lnα = αlogα lnα = α
ln lnα
lnα = αβ−1 .

Since ln η is the negative of lnα, it follows that

ln η = − lnα = −αβ−1 .

It is only right to say that such transcendental ANs
are not very suitable for numerical computations, since
actually they require a more complex structure, and even
their basic algebraic operations are not easy to manage.
Furthermore, they do not have a polynomial form, as
opposed to BANs, and the choice of the transcendental
basis V is arbitrary and problem-dependent. For this
reason, we omit a detailed description of their possible
encoding. However, they can be useful for some
particular problems, and so they deserved a mention in
this pragmatical presentation of the topic.

5. Several applications

5.1. Eigenvalues of a non-standard square matrix.
In this subsection we solve the problem of estimating the
eigenvalue with largest absolute value of a non-standard
matrix, i.e., a matrix filled with non-standard numbers.
For the sake of simplicity, hereinafter we assume to work
with BANs.

First of all we have implemented a procedure
to create random square matrices with predefined
non-standard eigenvalues. The procedure as given in
Algorithm 1. Then, we implemented the non-standard
version of the well-known power iteration method
(Mises and Pollaczek-Geiringer, 1929) to find the
highest-absolute-value eigenvalue of a matrix; its
pseudocode is reported in Algorithm 2. It is worth
noticing that it mainly resembles the standard version

Non-standard analysis revisited: An easy axiomatic presentation . . . 71

Algorithm 1. Forming a random square matrix with
predefined eigenvalues.

Procedure Rand from Eigen(e)
1: /∗ Get the matrix dimension ∗/
2: n = length(e)
3: /∗ Generate a n × n normally distributed matrix ∗/
4: M = randn(n)
5: /∗ Get the Q-matrix of the qr factorization of M ∗/
6: [Q, ∼] = qr(M)
7: /∗ Generate a diagonal matrix with the eigenvalues in e ∗/
8: D = diag(e)
9: /∗ Rotate D according to Q ∗/

10: return QT DQ

Algorithm 2. Finding the highest-absolute-value
eigenvalue of a matrix.
Procedure Find Max Abs Eigenv(A, ε)

1: /∗ A: matrix to study; ε : real valued tolerance ∗/
2: v = 1
3: λr = vT Av
4: v = Av

||Av||
5: λ = vT Av
6: while not all components(|λ − λr|) < ε do
7: λr = λ
8: v = Av

||Av||
9: λ = vT Av

10: end while
11: return λ

of the procedure, differing in a tiny but crucial aspect:
the stopping criterion. As can be seen in Line 6,
to guarantee that the algorithm convergence at all the
components of the sought eigenvalue, one must consider
the tolerance threshold, at each of them separately.
Indeed, neither a non-standard threshold nor a threshold
on the smallest-magnitude component can accomplish the
task. The reason is that a non-standard threshold would
prefer approximating solution manifesting insignificant
improvements in higher order monosemia even at the
expenses of enormous errors on the lower order ones;
by contrast, a threshold on the smallest magnitude
manosemium would not guarantee convergence on the
higher order ones. Later in this section, a numerical
example which illustrates the effectiveness of the
approach is proposed.

For the purposes of this study, we used the ANs
encoding BAN3, and we applied Algorithm 2 to the matrix
in Eqn. (6). The latter was constructed in accordance to
Algorithm 1, rotating the reference system by

Q =

⎡

⎣
−0.53 −0.846 −0.055
0.829 −0.531 0.175
−0.177 0.047 0.983

⎤

⎦ (5)

and setting its eigenvalues to α + 5 − 4η, 1, and η. The
algorithm iterations are reported in Table 2, where vk
is the approximated eigenvector, λk is the approximated
eigenvalue and |rk| = |λk −λr| is the optimality residual.
For the sake of readability, the BANs encoding is reported
in a human readable form. To better understand the
inner representation of BANs, we provide in Table 5,
in Appendix, the same results but this time with BANs
shown in normal form, i.e., as they are output on screen
by our software library.

From Table 2 we can can see a remarkable
thing: even if the starting eigenvector is assumed to
be finite, the approximated eigenvalue in the iterative
scheme is immediately infinite, making the maximum
eigenvalue infinite. The next iterations just help to
refine its components (both the infinite, the finite and
the infinitesimal one). More precisely, the algorithm
is infinitely close to the optimal value just after a
few iterations. This fact is present also in the other
experiments with the power iteration method, suggesting
that even in a non-standard context the high convergence
rate of the algorithm is preserved; this property will be
investigated in a future work. There is a phenomenon
which may deserve further investigation in a future
work. During the algorithm iterations, the very early
approximations of an infinite eigenvalue may happen to
be finite, probably due to rounding and other computation
techniques. This may be of interest since it is the very first
time that an approximating procedure which works with
continuous non-standard quantities “jumps” from finite
to infinite values, and a deeper study of it may reveal
prospective research directions.

As is known, assuming the matrix A non-singular,
the smallest eigenvalues can be computed as well
applying the power iteration method to the matrix inverse
and inverting the procedure output. However, the
condition number plays an even more critical role in the
non-standard world than in the standard one. Indeed,
the condition number of non-standard matrices can be
non-standard as well, meaning that the computation errors
can be out-of-scale with respect to the real output, i.e., it
can be infinitely bigger than the norm of the matrix itself.
It is the case of the matrix in Eqn. (6) whose condition
number is

κ(A) =
α+ 5− 4η

η
= α2 + 5α− 4,

while the maximum eigenvalue of A−1 is known to be just
α.

Actually, computing the inverse as any common
linear algebra suite does, i.e., solving the system AA−1 =
I, one gets the result in Eqn. (7), while the correct
answer should have been the matrix reported in Eqn. (8).
Notice that the ill-conditioning of A does not affect
only the magnitude of the components digits, which are

72 V. Benci et al.

Table 2. Non-standard power iteration method applied step-by-step to Eqn. (6).

vk λk |rk|⎡

⎣
1
1
1

⎤

⎦ 0.224α+ 3.168− 0.168η -

⎡

⎣
0.829 + 1.604η − 12.139η2

−0.531 + 2.561η − 10.287η2

0.175 + 0.168η + 0.134η2

⎤

⎦ α+ 5− 13.157η 0.776α+ 1.832− 12.991η

⎡

⎣
0.829 + 1.604η2

−0.531 + 2.561η2

0.175 + 0.167η2

⎤

⎦ α+ 5− 4η 9.159η

⎡

⎣
0.829

−0.531
0.175

⎤

⎦ α+ 5− 4η 0

A =

⎡

⎣
0.687α+ 3.719− 2.719η −0.440α− 1.753 + 1.753η 0.145α+ 0.754− 0.754η

−0.440α− 1.753 + 1.753η 0.282α+ 2.126− 1.126η −0.093α− 0.417 + 0.417η
0.145α+ 0.754− 0.754η −0.093α− 0.417 + 0.417η 0.031α+ 0.156 + 0.844η

⎤

⎦ , (6)

Ã−1 =

⎡

⎣
−1.3e16− 5e33η − 2e51η2 3.3e15 + 1.3e33η+ 5.2e50η2 6.9e16 + 2.8e34η+ 1.1e52η2

3.3e15 + 1.3e33η + 5.2e50η2 −8.7e14− 3.5e32η− 1.4e50η2 −1.8e16− 7.3e33η− 2.9e51η2

6.9e16 + 2.7e34η + 1.1e52η2 −1.8e16− 7.3e33η− 2.9e51η2 −3.8e17− 1.5e35η− 6.1e52η2

⎤

⎦ . (7)

A−1 =

⎡

⎣
0.031α+ 0.281 + 0.687η −0.008α+ 0.449− 0.440η −0.174α+ 0.029 + 0.145η

−0.008α+ 0.449− 0.440η 0.002α+ 0.716 + 0.282η 0.046α+ 0.0474− 0.092η
−0.174α+ 0.029 + 0.145η 0.046α+ 0.047− 0.093η 0.966α+ 0.003 + 0.031η

⎤

⎦ , (8)

suspiciously big with respect to the ones in Eqn. (6),
but also the magnitude of inverse entries, which differ in
scale by a factor of α. For completeness, we computed
the highest-absolute-value eigenvalue also for (8), which
outputs the correct value, i.e., 1/η = α. The same would
not have been true if we had launched the algorithm on
(7). Likely, one may look for the closest eigenvalue to a
given constant μ. In the literature, the algorithm which
accomplishes the this task is the called inverse iteration
method (Pohlhausen, 1921). Its non-standard extension,
which again differs from its standard counterpart just by
the stopping criterion, is reported in Algorithm 3.

As a practical case of study, we performed an
experiment with a 8× 8 random input matrix (omitted for
space reasons) whose eigenvalues were

λ1 = 100η − 3η2 + 20η3, λ2 = −4η + 5η2 + 7η3,

λ3 = η + 2η2 + 9η3, λ4 = −2η + 5η2 − 100η3,

λ5 = 13η − 3η2 + 15η3, λ6 = 30η − 19η2 − η3,

λ7 = −25η − η2 + 8η3, λ8 = −42η + 2η2 − 2η3.

Notice that all the chosen eigenvalues have the

same magnitude because of the reasons discussed about
the condition number and the numerical stability of the
algorithm. We set the reference eigenvalue μ to η; thus
the inverse iteration method should output η+2η2 +9η3.
The algorithm iterations are reported in Table 4.

Among the possible applications of the search for
eigenvalues, we count game theory (Thompson and
Weil, 1972; 1969; Weil, 1968) (recent studies in
non-Archimedean game theory can be found in the works
of Cococcioni et al. (2021), or Fiaschi and Cococcioni
(2018; 2020)), or the search for the stationary distribution
of an ergodic Markov chain (as shown in next section), to
mention a few.

5.2. Markov chains and ANs to model quasi-
unreachable states, quasi-absorbing states and quasi-
bipartite chains. In this subsection we discuss how
ANs can be of any help when dealing with discrete-time
finite Markov chains (MCs in brief) (Gagniuc, 2017).
Recalling some basic knowledge, an MC is fully described
by the square matrix P of the transition kernels, also

Non-standard analysis revisited: An easy axiomatic presentation . . . 73

Table 3. Non-standard power iteration method applied step-by-step to Eqn. (8).

vk λk |rk|⎡

⎣
1
1
1

⎤

⎦ 0.727α+ 2.049 + 0.224η -

⎡

⎣
−0.177 + 0.890η+ 0.710η2

0.047 + 1.421η− 0.361η2

0.983 + 0.093η− 1.289η2

⎤

⎦ α− 2.819η 0.273α− 2.049− 3.043η

⎡

⎣
−0.177 + 0.890η2

0.047 + 1.421η2

0.983 + 0.093η2

⎤

⎦ α 2.819η

⎡

⎣
−0.177
0.047
0.983

⎤

⎦ α 0

Table 4. Non-standard inverse iteration method with μ = η.

λk |rk|
−0.745η + 2.005η2 − 38.466η3 –

η + 2.0η2 + 8.846η3 1.745η − 0.005η2 + 47.312η3

η + 2.0η2 + 6.434η3 −2.413η3

η + 2.0η2 + 3.619η3 2.815η3

η + 2.0η2 + 10.053η3 6.434η3

η + 2.0η2 + 11.259η3 1.206η3

η + 2.0η2 + 6.836η3 4.423η3

η + 2.0η2 + 10.455η3 3.619η3

η + 2.0η2 + 5.63η3 4.825η3

η + 2.0η2 + 6.434η3 0.804η3

η + 2.0η2 + 5.227η3 1.206η3

η + 2.0η2 + 8.846η3 3.619η3

η + 2.0η2 + 2.815η3 6.032η3

η + 2.0η2 + 11.661η3 8.846η3

η + 2.0η2 + 5.63η3 6.032η3

η + 2.0η2 + 8.444η3 2.815η3

η + 2.0η2 + 8.444η3 0

known as the transition matrix, such that

Pi,j ≥ 0, ∀ i, j = 1, . . . , n

and
n∑

i=1

Pi,j = 1, ∀ j = 1, . . . , n,

where n is the matrix dimension.

A distribution π over states is said stationary if it
is invariant with respect to P , i.e., Pπ = π. It can
be found by solving the (redundant) linear system in (9)

or computing the eigenvector associated with the unit
eigenvalue by means of Algorithm 3, as already shown
in the previous section,

{
Pπ = π,

||π||1 = 1,
(9)

The existence and uniqueness of such a distribution are
guaranteed by the ergodic theorem. Finally, a chain
satisfying the hypotheses of the ergodic theorem is
referred to as ergodic.

74 V. Benci et al.

5.2.1. Modelling quasi-unreachable states. A
quasi-unreachable state is a state of an MC which is
theoretically reachable from elsewhere, but in practice
the probability that this happens is so small that it
results to be out of scale when compared with the other
quantities in play. Sometimes one cannot get rid of such
states because they are essential in the description of
the system under study. A possible way to model them
is to construct transition kernels assigning a very small
probability to hit these states. This approach can work
but lays itself open to numerical instabilities. On the
other hand, here we propose to model such situations by
means of non-standard kernels which assign infinitesimal
probabilities (Benci et al., 2018), rather than very small
but finite ones. In this way, the numerical instabilities are
forestalled without affecting the quality of the model.

As a practical example, consider the chain in Fig. 1
along with its matrix representation

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
3 0 0 1

4 0
1
2 0 1

3 0 0
1
6 0 0 3

4 1

0 1− η 2
3 0 0

0 η 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (10)

Here, the state 5 is a quasi-unreachable state, since it can
be hit just from 2 and with the infinitesimal probability η.

It can be demonstrated that the chain in (10)
is ergodic, and it admits one unique stationary
distribution. Leveraging Algorithm 3, one can
numerically approximate it obtaining the distribution

πn =

⎡

⎢⎢⎢⎢⎣

0.142− 0.057η + 0.004η2

0.173− 0.012η + 0.001η2

0.307− 0.049η + 0.003η2

0.378− 0.153η + 0.011η2

0.173η+ 0.012η2

⎤

⎥⎥⎥⎥⎦
. (11)

As expected, the probability to asymptotically be in state
5 is infinitesimal, since it is extremely difficult to reach,
but it is surprisingly easy to leave. This fact reflects
exactly what a quasi-unreachable state is and how it
should behave.

Since P is low dimensional, an exact computation of
the stationary distribution can be attained with the help
of symbolic tools such as Mathematica R©. The symbolic
stationary distribution πs, computed with Mathematica, is

πs =
[

18−6η
127+9η

, 22
127+9η

,

39+9η
127+9η

, 48−16η
127+9η

, 22η
127+9η

]
.

Thus πn is only a numerical approximation the exact

1 5

2

3

41
3

1
2

1
6

1− η

η

1
3

2
3

1 3
4

1
4

Fig. 1. Markov chain where state 5 is a quasi-unreachable state.

Algorithm 3. Non-standard inverse iteration method.
1: /∗ A: square matrix

μ: reference eigenvalue

ε: real valued tolerance ∗/
Procedure NS Inverse Iteration(A, μ, ε)

2: B = (A − μI)−1
3: v = 1
4: λr = 1

vT A−1v
5: v = Bv

||Bv||
6: λ = 1

vT Bv + μ
7: while not all component(|λ − λr|) < ε do
8: λr = λ
9: v = Bv

||Bv||
10: λ = 1

vT Bv + μ
11: end while
12: return λ

value, πs. However, computing the exact solution using
Mathematica R© is not a viable solution for practical
problems, as already said in Section 3. Indeed,
symbolic tools do not scale with problem dimension and
start struggling even with simple 8 × 8 linear systems
(Cococcioni et al., 2021).

5.2.2. Modelling quasi-absorbing states. As opposed
to quasi-unreachable states, a quasi-absorbing state is a
state which is very difficult to abandon when compared
with the probability to hit it. Similarly, however, one can
model such a kind of states with an infinitesimal outgoing

Non-standard analysis revisited: An easy axiomatic presentation . . . 75

1 5

2

3

41
3

1
2

1
6

1

η

1− η

1
3 2

3

3
4

1
4

Fig. 2. Markov chain where state 5 is a quasi-absorbing state.

1 5

2

4

3

1− η 1− η

1− η1− η

η

η

η

η

η2

η2

η2

η2
1− 4η2

Fig. 3. Markov chain where state 5 is more quasi-absorbing than
quasi-unreachable.

probability. A first example is reported in

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
3 0 0 1

4 0
1
2 0 0 0 η
1
6 0 0 3

4 0

0 1 2
3 0 0

0 0 1
3 0 1− η

⎤

⎥⎥⎥⎥⎥⎥⎦
(12)

and depicted in Fig. 2. For the sake of brevity, we
anticipate that all the experiments here on will involve
ergodic chains.

From the stationary distribution

πn =

⎡

⎢⎢⎢⎢⎣

1.385η − 13.527η2

1.692η − 16.533η2

3η − 29.308η2

3.692η − 36.071η2

1− 9.769η+ 95.438η2

⎤

⎥⎥⎥⎥⎦
,

πs =
[

18η
13+127η

, 22η
13+127η

,

39η
13+127η

, 48η
13+127η

, 13
13+127η

]T
,

(13)

we can deduce that state 5 has an asymptotic probability
very close to 1, as expected by a quasi-absorbing state.

Even if this result seems to be trivial, it is not.
First of all, it confirms the good behaviour of the
numerical technology; secondly, which is more important,
it sheds light on the probability distribution outside
the quasi-absorbing state. Indeed, not considering the
improbable states, one cannot assert that state 1 is
about 2.67 times less frequent than state 4, or that the
latter is 2.18 times more frequent than state 2. Even
in case η was represented by a very small value, we
would not be able to say something similar with absolute
certainty. Indeed, numerical inaccuracies introduced
by such a rough approximation may badly affect the
result, especially in non-trivial cases. On the contrary,
a numerical non-Archimedean approach does not suffer
from this potential lack of reliability and provides a result
coherent with the expectations: the probability of finding
the system in state 5 is incommensurable with respect to
the other states.

Now let us consider two even more interesting
examples where the quasi-absorbing state is, at the same
time, a quasi-unreachable one. These case studies are
useful to get some insight into scenarios involving MCs
with infinitesimals.

The first one is about a chain where the incriminated
state, number 5, has an outgoing probability which is
infinitely smaller than the ingoing one, even if the latter
is already infinitesimal. The chain is reported in Fig. 3
and

P =

⎡

⎢⎢⎢⎢⎣

0 0 0 1− η η2

1− η 0 0 0 η2

0 1− η 0 0 η2

0 0 1− η 0 η2

η η η η 1− 4η2

⎤

⎥⎥⎥⎥⎦
; (14)

76 V. Benci et al.

its stationary distribution is

πn =

⎡

⎢⎢⎢⎢⎣

η − 4η2

η − 4η2

η − 4η2

η − 4η2

1− 4η + 16η2

⎤

⎥⎥⎥⎥⎦
,

πs =
[

η
1+4η

, η
1+4η

,

η
1+4η

, η
1+4η

, 1
1+4η

]T
.

(15)

Even if reasonable, it is interesting to note that 5
has a finite asymptotic probability while all the other
states infinitesimal. This holds true even if 5 is extremely
difficult to reach (a probability to be hit of just η) and even
if starting from a node different from 5. The reason stems
from the fact that the flow of the chain inexorably passes
through 5 accumulating there, since it still inexorably
leaves the state but with infinitely greater difficulty. Thus,
5 acts like a sink in the previous experiment, even if it is
quasi-unreachable. This means that what counts to define
the behaviour of a node in a chain is mainly the magnitude
of the ratio among its input and output links. A possible
system which can be modelled by this chain may be a
very efficient device (nodes 1-2-3-4) which slowly loses
energy (node 5). In addition, the loss is very marginal with
respect to the device frequency of activity, and a small
part of the lost energy can be renewed and put back in the
system.

The second experiment involves again a slight
variation in the chain (10), where this time we assume that
also the transition from 5 to 3 has probability η. The chain
is resumed in Fig. 4 and

P =

⎡

⎢⎢⎢⎢⎣

1
3 0 0 1

4 0
1
2 0 1

3 0 0
1
6 0 0 3

4 η
0 1− η 2

3 0 0
0 η 0 0 1− η

⎤

⎥⎥⎥⎥⎦
. (16)

The stationary distribution

πn =

⎡

⎢⎢⎢⎢⎣

0.121− 0.030η− 0.003η2

0.148+ 0.013η+ 0.001η2

0.262+ 0.083η+ 0.007η2

0.322− 0.079η− 0.007η2

0.148+ 0.013η− 0.001η2

⎤

⎥⎥⎥⎥⎦
,

πs =
[

18−6η
149−13η

, 22
149−13η

,

39+9η
149−13η

, 48−16η
149−13η

, 22
149−13η

]T

(17)

1 5

2

3

41
3

1
2

1
6

1− η

η

1
3

2
3

η

1− η

3
4

1
4

Fig. 4. Markov chain where state 5 is both a quasi-unreachable
state and a quasi-absorbing one.

shows how, even if there exists a quasi-unreachable and
a quasi-absorbing state, all the states can still have an
asymptotic finite probability to be visited, provided that
the quasi-absorbing state is also the quasi-unreachable
one. We think this was a not so obvious a-priori outcome,
and thus this makes this result rather interesting.

As a future work, we shall use non-Archimedean
MCs to model quasi-unreachable and quasi-absorbing
states, to model deterioration of financial assets in
quantitative finance applications or vicious circles of
recession in economics.

5.3. Non-Archimedean Cholesky matrix factoriza-
tion. The Cholesky factorization is the decomposition
of a positive definite square matrix A into the product of a
lower triangular matrix L and its conjugate transpose, i.e.,
LL∗ = A (Golub and Van Loan, 2013). Among its many
applications we count linear and non-linear optimization
(Arora, 2004), matrix inversion (Krishnamoorthy and
Menon, 2013), Monte Carlo simulations (see the Matlab
implementation of the randn function), and Kalman
filters (Bierman, 2006). The algorithm for computing
the Cholesky factorization require the computation of the
square root, which makes this example challenging, since
it does not require just the algebraic operations mentioned
above.

In the following, we show an example of Cholesky
factorization of a non-Archimedean square positive
definite symmetric random matrix represented using the
BAN3 encoding. The pipeline involves the following
steps:

• Generate a non-standard random matrix G having

Non-standard analysis revisited: An easy axiomatic presentation . . . 77

size m × n, with m ≥ n. Its entries are
generated uniformly sampling each component in
[0, 1), admitting negative signs for non-leading
monosemia.

• Compute A as GTG. A is square, n × n, and
symmetric by construction. Shifting its spectrum
by any positive constant, say 1, guarantees it to be
positive-definite. To do this, it is enough to add the
identity matrix I to A.

• Finally, compute the matrix L, using the usual
Cholesky algorithm implemented in a way which is
BANs compliant.

The numerical results are reported as
Eqns. (18)–(21), we set m and n equal to 5 and we
skipped the addition of the identity matrix becauseA was,
by chance, already positive definite. In particular, Eqn.
(20) shows the obtained Cholesky matrix L, while Eqn.
(21) shows LL∗, i.e., what is expected to be close to A, up
to numerical errors. For all the matrices we reported ANs
in BAN2 format for space reasons but, as has been said,
for a better precision we realized all the computations by
means of BAN3 encoding. We evaluated the discrepancy
between A and LL∗ in order to measure the precision
of the computations. It turned out that ||A − LL∗||2
amounts to 0.005 + 0.001η2, i.e., the approximation is
quite accurate even on the infinitesimal monosemia since
||A||2 = 6.24 + 3.88η. Similar computations showed
the same behaviour, suggesting the possibility to find
analytical bounding errors for such non-Archimedean
Cholesky factorization; this aspect will be investigated in
a future work.

While in the work of Cococcioni et al. (2021) for
the first time the numerical inverse of a non-Archimedean
matrix was used operationally within an algorithm (the
simplex one), this is the first time that a numerical
Cholesky factorization of a non-Archimedean matrix
is obtained. This approach would scale for large
matrices, contrary to a pure symbolic approach like
Mathematica R©. As a final consideration concerning the
Cholesky factorization obtained above, it is important to
highlight that this was possible since, in this specific case,
all the involved BANs in matrix A had an even order
(equal to zero, to be precise).

In general, the factorization might fail, since the
Cholesky factorization requires the computation of the
squared root of a BAN and this root cannot always be
represented as a BAN, e.g.,

√
η. To overcome this

difficulty, two solutions are possible: (i) make use of
general-purpose ANs instead of BANs; or, (ii) resort
to the LDL decomposition, which is a variant of the
Cholesky one which does not require the computation of
the square root. As a future work, we plan to implement
the non-Archimedean LDL factorization to solve

lexicographic multi-objective quadratic programming
problems using the non-Archimedean interior point
method (Fiaschi and Cococcioni, 2021). Another
interesting thing to do is to enrich our software library
with a non-Archimedean function able to compute the
non-Archimedean LU factorization of a matrix, as LU
factorization is another key pillar of numerical computing.

6. Related works

Non-Archimedean scientific computing is an emerging
research topic still in its infancy, with a huge amount
of investigations waiting to be done. The biggest
contribution to numerical non-Archimedean computing
has been mainly due to Y.D. Sergeyev, who has introduced
the grossone methodology (Sergeyev, 2017). Since its
appearance in 2003, a number of applications have
emerged in extremely disparate fields: optimization (De
Leone et al., 2020b; Lai et al., 2021a; 2021b; De
Leone, 2018; Cococcioni and Fiaschi, 2020; Cococcioni
et al., 2020) ordinary differential equations (Sergeyev
et al., 2016; Amodio et al., 2017; Iavernaro et al.,
2020) and machine learning (De Leone et al., 2020a;
Astorino and Fuduli, 2020), among others. In addition,
an implementation of the grossone methodology within
Simulink R© has been recently introduced (Falcone et al.,
2020a; 2020b).

7. Conclusions

In this paper we have introduced a novel, simpler
axiomatization of Alpha-Theory, to facilitate the adoption
of non-standard methods among practitioners. This theory
is easier than Robinson’s non-standard analysis, since it is
axiomatic and it does not require the knowledge of model
theory and advanced concepts mathematical logic. Then,
we have recalled the recently introduced algorithmic
numbers. Finally we have shown three new applications
(NA eigenvalue computation, NA Markov chains, and NA
Cholesky factorization) of Alpha-Theory, never addressed
before in a non-Archimedean setting. We believe
that the time is now mature to start non-Archimedean
scientific computing, which promises the possibility to
model and solve new interesting problems, which cannot
be modelled/solved using standard (i.e., Archimedean)
numerical algorithms. In addition, our opinion is that
fixed-precision non-Archimedean scientific computing
has the chance to efficiently solve real-life problems,
where infinite-precision or purely symbolic approaches
might fail, due to their lower hardware-friendly nature.

Acknowledgment

This work was partly supported by the Italian Ministry of
Education and Research (MIUR) in the framework of the

78 V. Benci et al.

G =

⎡

⎢⎢⎢⎢⎣

0.628− 0.629η 0.781− 0.343η 0.457 + 0.908η 0.367 + 0.733η 0.685− 0.481η
0.419 + 0.383η 0.815 + 0.765η 0.145 + 0.614η 0.457 + 0.127η 0.040 + 0.783η
0.966− 0.733η 0.191 + 0.810η 0.360− 0.751η 0.224− 0.167η 0.749− 0.035η
0.311 + 0.213η 0.621 + 0.372η 0.784 + 0.888η 0.113 + 0.584η 0.270 + 0.733η
0.505− 0.242η 0.808 + 0.984η 0.724− 0.438η 0.472− 0.053η 0.046− 0.211η

⎤

⎥⎥⎥⎥⎦
, (18)

A =

⎡

⎢⎢⎢⎢⎣

1.819− 0.617η 1.162 + 1.606η 1.516− 0.798η 1.266 + 1.803η 1.484 + 0.639η
1.162 + 1.606η 1.072 + 1.925η 0.746 + 1.517η 0.813 + 2.119η 1.193 + 1.956η
1.516− 0.798η 0.746 + 1.517η 1.710− 1.773η 0.929 + 0.934η 1.043− 0.713η
1.266 + 1.803η 0.813 + 2.119η 0.929 + 0.934η 1.183 + 2.514η 1.292 + 1.489η
1.484 + 0.639η 1.193 + 1.956η 1.043− 0.713η 1.292 + 1.489η 1.657 + 0.642η

⎤

⎥⎥⎥⎥⎦
, (19)

L =

⎡

⎢⎢⎢⎢⎣

1.349− 0.229η 0 0 0 0
0.862+ 1.337η 0.574− 0.330η 0 0 0
1.125− 0.401η −0.389+ 0.402η 0.542− 0.514η 0 0
0.938+ 1.496η 0.008− 0.736η −0.227− 1.436η 0.500− 0.934η 0
1.101+ 0.660η 0.427+ 0.098η −0.053− 2.166η 0.488− 1.151η 0.152− 0.001η

⎤

⎥⎥⎥⎥⎦
,

(20)

A � LL∗ =

⎡

⎢⎢⎢⎢⎣

1.820− 0.618η 1.160 + 1.610η 1.520− 0.799η 1.260 + 1.800η 1.480 + 0.638η
1.160 + 1.610η 1.070 + 1.930η 0.750 + 1.520η 0.810 + 2.120η 1.190 + 1.960η
1.520− 0.799η 0.750 + 1.520η 1.710− 1.770η 0.930 + 0.935η 1.040− 0.712η
1.260 + 1.800η 0.810 + 2.120η 0.930 + 0.935η 1.180 + 2.510η 1.290 + 1.490η
1.480 + 0.638η 1.190 + 1.960η 1.040− 0.712η 1.290 + 1.490η 1.660 + 0.643η

⎤

⎥⎥⎥⎥⎦
. (21)

CrossLab project (Departments of Excellence), granted
to the Department of Information Engineering of the
University of Pisa. We wish to thank the three anonymous
reviewers for their helpful comments.

References
Amodio, P., Iavernaro, F., Mazzia, F., Mukhametzhanov, M.

and Sergeyev, Y. (2017). A generalized Taylor method
of order three for the solution of initial value problems
in standard and infinity floating-point arithmetic, Math-
ematics and Computers in Simulation 141: 24–39, DOI:
10.1016/j.matcom.2016.03.007.

Arora, J.S. (2004). Introduction to Optimum Design, Elsevier,
San Diego.

Astorino, A. and Fuduli, A. (2020). Spherical separation with
infinitely far center, Soft Computing 24(23): 17751–17759.

Benci, V. and Cococcioni, M. (2020). The algorithmic numbers
in non-Archimedean numerical computing environments,
Discrete and Continuous Dynamical Systems S 14(5):
1673–1692, DOI: 10.3934/dcdss.2020449.

Benci, V. and Di Nasso, M. (2003). Numerosities of labelled
sets: A new way of counting, Advances in Mathematics
173(1): 50–67.

Benci, V. and Di Nasso, M. (2018). How to Measure the Infi-
nite: Mathematics with Infinite and Infinitesimal Numbers,
World Scientific, Singapore.

Benci, V., Di Nasso, M. and Forti, M. (2006). The eightfold path
to nonstandard analysis, in N. J. Cutland et al. (Eds), Non-
standard Methods and Applications in Mathematics, AK
Peters, Wellesley, pp. 3–44.

Benci, V., Horsten, L. and Wenmackers, S. (2018). Infinitesimal
probabilities, British Journal for the Philosophy of Science
69(2): 509–552.

Bierman, G.J. (2006). Factorization Methods for Dis-
crete Sequential Estimation, Courier Corporation, North
Chelmsford.

Cococcioni, M., Cudazzo, A., Pappalardo, M. and Sergeyev,
Y. (2020). Solving the lexicographic multi-objective
mixed-integer linear programming problem using
branch-and-bound and grossone methodology, Communi-
cations in Nonlinear Science and Numerical Simulation
84: 105177, DOI: 10.1016/j.cnsns.2020.105177.

Cococcioni, M. and Fiaschi, L. (2020). The Big-M method
with the numerical infinite M, Optimization Letters 15:
2455–2468, DOI: 10.1007/s11590-020-01644-6.

Cococcioni, M., Fiaschi, L. and Lambertini, L. (2021).
Non-Achimedean zero-sum games, Journal of Applied
and Computational Mathematics 113483: 1–17, DOI:
10.1016/j.cam.2021.113483.

Conway, J.H. (2000). On Numbers and Games, CRC Press, New
York.

De Leone, R. (2018). Nonlinear programming and grossone:
Quadratic programming and the role of constraint
qualifications, Applied Mathematics and Computation
318: 290–297, DOI: 10.1016/j.amc.2017.03.029.

De Leone, R., Egidi, N. and Fatone, L. (2020a). The use of
grossone in elastic net regularization and sparse support
vector machines, Soft Computing 24(23): 17669–17677.

De Leone, R., Fasano, G., Roma, M. and Sergeyev, Y.D.
(2020b). Iterative grossone-based computation of negative

Non-standard analysis revisited: An easy axiomatic presentation . . . 79

curvature directions in large-scale optimization, Journal of
Optimization Theory and Applications 186(2): 554–589.

Dehn, M. (1900). Die Legendre’schen Sätze über
die Winkelsumme im Dreieck, Mathematische Annalen
53(1900): 404–439, DOI: 10.1007/BF01448980.

Deveau, M. and Teismann, H. (2014). 72+ 42: Characterizations
of the completeness and Archimedean properties of
ordered fields, Real Analysis Exchange 39(2): 261–304.

Falcone, A., Garro, A., Mukhametzhanov, M.S. and Sergeyev,
Y.D. (2020a). Representation of grossone-based arithmetic
in simulink for scientific computing, Soft Computing
24(23): 17525–17539.

Falcone, A., Garro, A., Mukhametzhanov, M.S. and Sergeyev,
Y.D. (2020b). A Simulink-based software solution
using the infinity computer methodology for higher order
differentiation, Applied Mathematics and Computation
409: 125606, DOI: 10.1016/j.amc.2020.125606.

Fiaschi, L. and Cococcioni, M. (2018). Numerical asymptotic
results in game theory using Sergeyev’s infinity computing,
International Journal of Unconventional Computing
14: 1–25.

Fiaschi, L. and Cococcioni, M. (2020). Non-Archimedean
game theory: A numerical approach, Applied
Mathematics and Computation 409: 125356, DOI:
10.1016/j.amc.2020.125356.

Fiaschi, L. and Cococcioni, M. (2021). A non-Archimedean
interior point method for solving lexicographic
multi-objective quadratic programming problems, EURO
Journal on Computational Optimization, (submitted).

Gagniuc, P.A. (2017). Markov Chains: From Theory to Imple-
mentation and Experimentation, Wiley, Hoboken.

Golub, G.H. and Van Loan, C.F. (2013). Matrix Computations,
JHU Press, Baltimore.

Iavernaro, F., Mazzia, F., Mukhametzhanov, M. and Sergeyev,
Y. (2020). Conjugate-symplecticity properties of
Euler–Maclaurin methods and their implementation on
the infinity computer, Applied Numerical Mathematics
155: 58–72, DOI: 10.1016/j.apnum.2019.06.011.

Keisler, H.J. (1976). Foundations of Infinitesimal Calculus,
Prindle, Weber & Schmidt, Boston.

Krishnamoorthy, A. and Menon, D. (2013). Matrix inversion
using Cholesky decomposition, 2013 IEEE Conference
on Signal Processing: Algorithms, Architectures, Ar-
rangements, and Applications (SPA’13), Poznan, Poland,
pp. 70–72.

Lai, L., Fiaschi, L., Cococcioni, M. and Deb, K. (2021a).
Handling priority levels in mixed Pareto-lexicographic
many-objective optimization problems, Evolutionary
Multi-Criterion Optimization, Shenzhen, China, pp.
362–374, DOI: 10.1007/978-3-030-72062-9 29.

Lai, L., Fiaschi, L., Cococcioni, M. and Deb, K. (2021b).
Solving mixed pareto-lexicographic multi-objective
optimization problems: The case of priority levels,
IEEE Transactions on Evolutionary Computation 25(5):
971–985, DOI: 10.1109/TEVC.2021.3068816.

Levi-Civita, T. (1892). Sugli infiniti ed infinitesimi attuali quali
elementi analitici, Atti del R. Istituto Veneto di Scienze Let-
tere ed Arti Series 7: 1892–1893.

Mises, R. and Pollaczek-Geiringer, H. (1929). Praktische
verfahren der gleichungsauflösung, Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte
Mathematik und Mechanik 9(1): 58–77.

Pohlhausen, E. (1921). Berechnung der eigenschwingungen
statisch-bestimmter fachwerke, Journal of Applied Math-
ematics and Mechanics/Zeitschrift für Angewandte Mathe-
matik und Mechanik 1(1): 28–42.

Robinson, A. (1996). Non-Standard Analysis, 2nd Edn,
Princeton University Press, Princeton.

Sergeyev, Y. (2017). Numerical infinities and infinitesimals:
Methodology, applications, and repercussions on two
Hilbert problems, EMS Surveys in Mathematical Sciences
4(2): 219––320.

Sergeyev, Y.D., Mukhametzhanov, M., Mazzia, F., Iavernaro, F.
and Amodio, P. (2016). Numerical methods for solving
initial value problems on the infinity computer, Journal of
Unconventional Computing 12(1): 3–23.

Thompson, G.L. and Weil, Jr, R.L. (1969). Further relations
between game theory and eigensystems, SIAM Review
11(4): 597–602.

Thompson, G.L. and Weil, R.L. (1972). The roots of matrix
pencils (Ay = λBy): Existence, calculations, and
relations to game theory, Linear Algebra and Its Applica-
tions 5(3): 207–226.

Weil, Jr, R.L. (1968). Game theory and eigensystems, SIAM
Review 10(3): 360–367.

Vieri Benci has mainly worked in the fields of
equations of mathematical physics and questions
of logic related to infinitesimal and infinite num-
bers and appears in the ISI Highly Cited list.
Among his most recent books are Variational
Methods in Nonlinear Field Equations (with D.
Fortunato) (Springer, 2014), How to Measure
the Infinite (with M. Di Nasso) (World Scien-
tific, 2018), La matematica e l’infinito (with P.
Freguglia) (Carocci, 2019). During his career he

has also taught courses in many foreign countries such as the USA,
China, Brazil, Belgium and Saudi Arabia.

Marco Cococcioni received his Laurea degree in
2000 and his PhD degree in computer engineer-
ing at the University of Pisa in 2000 and 2004, re-
spectively. In 2010–2011 he was a senior visiting
scientist at the NATO Undersea Research Cen-
tre (now CMRE) in La Spezia, Italy. Since 2016
he has been an associate professor at the Depart-
ment of Information Engineering of the Univer-
sity of Pisa. He is a member of three IEEE task
forces: Genetic Fuzzy Systems, Computational

Intelligence in Security and Defense, and Intelligent System Applica-
tion. Professor Cococcioni has co-authored more than 100 contributions
to international journals and conferences.

80 V. Benci et al.

Table 5. Non-Archimedean power iteration method applied step-by-step to Eqn. (6) with BANs, this time expressed in their normal
form.

vk λk |rk|⎡

⎣
α0(1 + 0η + 0η2)
α0(1 + 0η + 0η2)
α0(1 + 0η + 0η2)

⎤

⎦ α1(0.224 + 3.168η − 0.168η2) —

⎡

⎣
α0(0.829 + 1.604η − 12.139η2

α0(−0.531 + 2.561η − 10.287η2)
α0(0.175 + 0.168η + 0.134η2)

⎤

⎦ α1(1 + 5η − 13.157η2) α1(0.776 + 1.832η − 12.991η2)

⎡

⎣
α0(0.829 + 0η + 1.604η2)
α0(−0.531 + 0η + 2.561η2)
α0(0.175 + 0η + 0.167η2)

⎤

⎦ α1(1 + 5η − 4η2) α−1(9.159 + 0η + 0η2)

⎡

⎣
α0(0.829 + 0η + 0η2)
α0(−0.531 + 0η + 0η2)
α0(0.175 + 0η + 0η2)

⎤

⎦ α1(1 + 5η − 4η2) α0(0 + 0η + 0η2)

Lorenzo Fiaschi was born in 1995. He received
his BSc degree in computer engineering from the
University of Pisa, Italy, in 2018. He received
his MSc degree in computer science and artificial
intelligence from the University of Genoa, Italy,
in 2019. He is working towards his PhD degree
in information engineering at the University of
Pisa. His current research interests include arti-
ficial and evolutionary intelligence, applied non-
Archimedean models and game theory.

Appendix

Example of BANs expressed in their normal
form

In Table 5 we report the result already shown in Table 2,
but this time presenting BANs in their normal form, i.e.,
how they are internally represented in our software library.
Even if this version is less readable and elegant than the
one of Table 2, it helps to better understand how BANs
can appear in numerical computations performed by the
computer.

Received: 12 February 2021
Revised: 7 July 2021
Accepted: 21 September 2021

	Introduction
	Alpha-Theory
	Is even or odd? And other similar questions

	Concept of the algorithmic field
	Importance of fixed-length representations

	Algorithmic numbers
	Bounded ANs: A special case of ANs
	How to compute trigonometric functions on ANs
	How to compute exponential and logarithmic functions

	Several applications
	Eigenvalues of a non-standard square matrix
	Markov chains and ANs to model quasi-unreachable states, quasi-absorbing states and quasi-bipartite chains
	Modelling quasi-unreachable states
	Modelling quasi-absorbing states

	Non-Archimedean Cholesky matrix factorization

	Related works
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

