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New design conditions on the observer based residual filter design for the linear discrete-time linear systems with zoned
system parameter faults are presented. With respect to time evolution of residual signals and with a guarantee of their
robustness, the design task is stated in terms of linear matrix inequalities, while the recursive implementation of algorithms
is motivated by the platform existence for real-time processing. A major objective is to analyze the configuration required
and, in particular, a new characterization of the norm boundaries of the multiplicative zonal parametric faults to be projected
onto the structure of the set of linear matrix inequalities.
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1. Introduction

The problems of the system state estimation and
the model-based fault detection in the presence of
disturbances have been essential since their formulation
(Luenberger, 1979; Gertler, 1998; Ellis, 2002). The
impact of the linear matrix inequalities (LMIs) on
observer design tasks has been well recognized to allow
for fault detection, and has inspired numerous fault
detection filter structures (Chiang et al., 2001; Baı̈keche
et al., 2006; Ferdowsi and Jagannathan, 2011; Sun and
Yang, 2014). Tools for fault detection and residual filters
in discrete-time systems have been scrutinized by Kim
and Rew (2013), Gao (2015), Filasová et al. (2016) or
Krokavec and Filasová (2019a). Modern trends in this
field with relation to fault tolerant control (FTC) systems
are discussed by Borutzky (2021), Ding (2021) and Hamdi
et al. (2021).

One from the properties characterizing multiplicative
faults is their effect on the system structure and their
dependence on the system state variables (Gershon et
al., 2005). The treatment of the local plant parametric
uncertainty makes fault detection methods different from
standard (Korovin and Fomichev, 2009). Although
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the impact of parametric faults on dynamic systems is
ubiquitous, often occurring in the form of a magnitude
saturation of a system variable, only a few obtained
results concern direct connections of multiplicative faults
in diagnosis (Ferdowsi and Jagannathan, 2011; Gao and
Duan, 2012). Other support principles can be found in
the works of Zhong et al. (2006), Gil et al. (2006) or
Doraiswami and Cheded (2012). A review of the state
of the art is given by Park et al. (2020) or Huang et al.
(2021).

If the system is characterizable by a parameter vector
θ and the set of the related measurements from the
system represents an asymptotically stationary stochastic
process, parametric fault detection can be transformed
into monitoring the mean of a Gaussian residual vector
(cf. the work of Döhler et al. (2020) and the references
therein). The main problem remains the construction
of the measurement structure for the detection of faults
of individual parameters of a fault of a group of such
parameters (Wu et al., 2015). In view of the above, the
aim of this paper is to formulate such a task using a
sector of parameters in the system matrix of the system
state description and to find a solution by estimating the
corresponding components of the system state. The main
objective of this paper is to derive LMI conditions for
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this problem and to show that the obtained conditions are
of the same computational complexities as standard LMI
methods for fault detection and isolation (FDI) design.

Some new approaches to the treatment of sector
multiplicative faults in the systems, which propose limited
state variable measurements related to fault detection, or
using zonate fault interpretations, have been proposed by
Krokavec and Filadová (2019b; 2020). With reference
to these results, and using a more realistic way to reflect
the quadratic stability principle for uncertain discrete-time
linear systems (Krokavec and Filasová, 2021), a subject
of the paper are extended methods of fault residual
filter design for discrete-time linear systems with single
zoned multiplicative faults. By considering the vertically
stripped system matrix element changes in the faulty
regime after the occurrence of a single multiplicative
fault, the standard (or enhanced) bounded real lemma LMI
structure is modified to trace over the residual filter design
conditions and the quadratic stability principle is applied
to respect the existence of bounds on given stripped sector
parameters for which the constrained form in residual
filter design is directly applicable. The goal is sufficient
flexibility to guarantee dynamic properties of the observer
structure, as well as satisfactory residual signal sensitivity
and thresholds in the fault detection.

The paper is organized as follows. After a short
introduction in Section 1 and the problem formulation in
Section 2, the approaches based on the H∞ norm in the
residual filter parameter design are addressed in Section 3.
Enabling the internal parameter bound properness and
using the quadratic stability idea, the related design
method is addressed in Section 4. In the sequel, Section 5
shows the applicability of the method using a simulation
example and Section 6 gives some concluding remarks.

Throughout the paper, the following notation is used:
xT, XT denote the transposes of a vector x and a matrix
X , respectively; for a square matrix the inequality X ≺ 0
means that X is a negative definite symmetric matrix; the
symbol In indicates the n-th order identity matrix; R+

denotes the set of positive real numbers; R
n and R

n×r

refer to the set of all n-dimensional real vectors and n× r
real matrices, respectively, and Z+ is the set of positive
integers.

2. Problem formulation and description

The discrete-time dynamical systems considered are
represented by the space-time description belonging to the
following class of equations:

q(i+ 1) = (F +ΔF (i))q(i) +Gu(i)) +Ed(i) , (1)

z(i) = Cq(i) , (2)

y(i) = Cyq(i) , (3)

where q(i) ∈ R
n, u(i) ∈ R

r, y(i), z(i) ∈ R
s stand

for the system state, the system control input, the system
output and the fault detection support measurement
output, respectively, and d(i) ∈ R

p is a norm bounded
unknown disturbance (d(i)Td(i) ≤ d). The nominal part
of the system is characterized by the finite valued matrices
E ∈ R

n×p, C ∈ R
s×n, Cy ∈ R

m×n, F ∈ R
n×n,

G ∈ R
n×r. The instant i ∈ Z+ is used as a representation

of the time-instant point ti = i ts, where ts is the sampling
period.

After a system parameter fault occurrence, the
system matrix in (1) is considered as F (i) = F +ΔF (i),
where ΔF (i) ∈ R

n×n represents parametric faults. Since
the fault parametric bounds are always known as they have
clear physical meaning, it is considered in the following
that ΔF (i) is norm-bounded and rankΔF (i) = s < n.
This implies that there are s linear independent columns in
ΔF (i) associated with parametric faults. For simplicity, it
is considered that these columns from ΔF (i) are arranged
in the vertical strip of dimension n × s. In the opposite
case, there exists a perturbation matrix to reorder system
state variables to yield such a form of vertical strip in
ΔF (i).

Since FTC methods have to be applied when a
parametric fault causes system instability, the proposed
method is concentrated on detection of parametric faults
which do not lead to system instability, but their
permanent occurrence is unacceptable. Because of
practical reasons, it is assumed that all state variables
related with the vertical strip columns of ΔF (i) are
measured, the existence of parametric faults is locally
reproducible only in a given vertical strip and the vertical
strip is a sparse array.

To cope with the parametric fault residual generation
task, the following assumptions should be made
throughout (Chen et al., 2011):

(i) q(i+ 1) = (F +ΔF (i))q(i) is robust stable for all
ΔF (i), i ∈ Z+;

(ii) ΔF (i) are norm-bounded (the faulty-free regime
means ΔF (i) = 0);

(iii) the pair (F ,C) is observable.

Note that we do not exclude a specific principle for
solving the problem of the observer-based residual
synthesis for linear systems with disturbances if s > p
(Korovin and Fomichev (2009)).

Remark 1. A natural key idea is to get a discrete-time
state-space representation from the autonomous faulty
linear continuous-time system

q̇(t) = (A+ΔA(t))q(t), (4)

where q(t) ∈ R
n, A, ΔA(t) ∈ R

n×n, ΔA(t)
is norm-bounded, rankΔA(t) = s < n and the
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linear independent columns in ΔA(t), associated with
parametric faults, are arranged in a vertical strip of
dimension n × s. With only several potentially faulty
nonzero parameters Δaα,β(t), α, β ∈ {1, . . . , n} of the
matrix ΔA(t) = {Δajl(t)}nj,l the Euler approximation

dq(t)

dt

∣
∣
∣
∣
t=i ts

≈ q(i+ 1)− q(i)

ts
(5)

implies

q(i + 1) = (In + ts(A+ΔA(i)))q(i)

= (In + tsA)q(i) + tsΔA(i)q(i)

= (F +ΔF (i))q(i),

(6)

where, with Δfjl(i) = tsΔajl(t)|t=i ts
,

F = In + tsA,

ΔF (i) = tsΔA(i) = {Δfjl(i)}nj,l.
(7)

It is an evident choice that such sampling preserves
the same faulty element positions α, β ∈ {1, . . . , n}
in ΔA(t) and ΔF (i), while the change in parameters
in ΔF (i) will be ts-times smaller. The consequence
of that sampling which uses the fundamental matrix of
a continuous-time system model is that all elements of
the ΔF (i) matrix seem to be faulty and correlated.
The disadvantage of the proposed approach is a higher
sampling frequency, the advantage is the recurrent
algorithm, preserving the system parametric structure.

Remark 2. To make multiplicative fault uncorrelated
with those state variables that are not exposed to the
vertical strip of multiplicative faults, the block diagonal
matrix H◦(i) ∈ R

n×n is defined as

H◦(i) = diag
[
0 H(i) 0

]

, (8)

where the sub-matrix H(i) ∈ R
s×s has to be diagonal

and its elements represent the unknown parametric faults,
that is

H(i) = diag
[
h1(i) h2(i) · · · hs(i)

]

. (9)

It is assumed that the component fault terms hl(i), l =
1, 2, . . . , s of H(i) are unknown but with known bounds.
Naturally, under the above structure, the matrix H◦(i) is
quasi-orthogonal.

Lemma 1. To express parameter faults as multiplicative
uncorrelated sensor faults while the fault model is defined
as

ΔF (i)q(i) = F ◦
ΔH

◦(i)q(i) , (10)

where

F ◦
Δ =

[
0 FΔ 0

]

, F ◦
Δ ∈ R

n×n, FΔ ∈ R
n×s , (11)

FΔ is a binary strip matrix (matrix in which each entry is
either 0 or 1), define the faulty element positions (Hogben,
2011) so as to get

C =
[

0 Is 0
]

, C ∈ R
s×n. (12)

Then
F ◦

ΔH
◦(i)q(i) = F ◦

ΔZ
◦(i)h◦(i), (13)

where

h◦(i) =

⎡

⎣

0
h(i)
0

⎤

⎦ , hT(i) =
[
h1(i) · · · hs(i)

]

, (14)

Z◦(i) = diag
[
0 Zd(i) 0

]

, (15)

Zd(i) = diag
[
z1(i) z2(i) · · · zs(i)

]

. (16)

Here Zo(i) is the diagonal matrix selector of the mea-
sured strip state variables and Zd(i) reflects measured
variables z(i) at the time instant i.

Proof. For the model (10) we deduce that

F ◦
ΔH

◦(i)q(i) = F ◦
ΔQd(i)h

◦(i) , (17)

where Qd(i) is constructed from the associated system
state variables as

Qd(i) = diag
[
q1(i) · · · qn(i)

]

(18)

and the left and right-hand sides of (17) are mutually
equivalent.

Define

C◦ = diag
[
0 Is 0

]

=

⎡

⎣

0
C
0

⎤

⎦ . (19)

Due to the intertwining properties, (11) implies

F ◦
Δ = F ◦

ΔC
◦, (20)

which, using (15) and (16), leads to the parametrization of
(17) as

F ◦
ΔQd(i)h

◦(i) = F ◦
ΔC

◦Qd(i)h
◦(i)

= F ◦
ΔZ

◦(i)h◦(i),
(21)

where Z◦(i) = C◦Qd(i).
The structure of the above matrix product has the

form

F ◦
ΔH

◦(i)q(i) =
[
0FΔ 0

]

⎡

⎣

0 0 0
0Zd(i) 0
0 0 0

⎤

⎦

⎡

⎣

0
h(i)
0

⎤

⎦ (22)

and implies (13). This concludes the proof. �
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Remark 3. Assume that the state variables connected
with nonzero diagonal components of H(i) are
measurable. Then (13) is arranged in zones and
inherently supports the H∞ norm approach in the fault
residual design. Independently, the non-overlapping
measurement structure can be prescribed by the condition

CyC
T = 0 , (23)

if such a structural set of measurements can be technically
realizable. Such an implementation allows the system
operating point to be set independently of the FTC
measurement subsystem, only depending on the measured
output variables y(i).

The family of full order state observers of the form

qe(i+ 1) = Fqe(i) +Gu(i) + J(z(i)− ze(i)) , (24)

ze(i) = Cqe(i) (25)

represents a basis to generate fault residuals, where
qe(i) ∈ R

n is the observer state vector and J ∈ R
n×s is

a matrix with entries in the prescribed real matrix space,
chosen from the condition that F e = F−JC is a Hurwitz
matrix.

The objective is the solvability of the parameters of
(24) subject to (1)–(3), and the design condition that the
state variable estimation error

e(i) = q(i)− qe(i) , (26)

converges in the fault-free regime, while the estimation
error is not equal to the zero vector in a fault occurrence.

3. H∞ norm approach in residual filter
design

Residual filters can be written compactly in different
forms. For convenience, it is considered below that for
the state observer (24) and (25) the fault residual filter

r(i) = RCe(i) (27)

is built, where R ∈ R
s×s is the filter gain matrix,

optimized for H∞ norms upper-bounds δ, γ, of the
transfer function matrices Ld(z) and Lh(z), reflecting the
mapping

r̃(z) = Lh(z)h̃
•
(z) , r̃(z) = Ld(z)d̃(z) , (28)

where h•(i) = Zd(i)h(i), r̃(z), h̃o(z), d̃(z) are
Z-transforms of discrete-time variable sequences r(i),
ho(i) and d(i), respectively.

Since the main point is the need to analyze the effect
of the residual relation (27) and the observer state error
described by, respectively

e(i+ 1) = F ee(i) + F ◦
Δh

•(i) +Ed(i) , (29)

where
F e = F − JC , (30)

(27) and (38) imply

Lh(z) = RC(zIn − F e)
−1F ◦

Δ, (31)

Ld(z) = RC(zIn − F e)
−1E . (32)

In the following, some existence and uniqueness
design conditions are presented.

Theorem 1. The Luenberger observer (24), (25) is
quadratically stable if there exist a positive definite sym-
metric matrix P ∈ R

n×n, matrices R ∈ R
s×s, Y ∈

R
n×s and positive scalars γ, δ ∈ R such that

P = P T > 0 , γ > 0 , δ > 0 , (33)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P ∗ ∗ ∗ ∗ ∗
PF− Y C −P ∗ ∗ ∗ ∗

0 F ◦T
ΔP−δIs ∗ ∗ ∗

0 ETP 0 −γIp ∗ ∗
RC 0 0 0 −γIs ∗
RC 0 0 0 0 −δIs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0 . (34)

Here the star denotes the symmetric item in a symmetric
matrix. When the above conditions are satisfied, compute

J = P−1Y (35)

and the residual generator gain matrix is defined directly
by the matrix variable R.

Proof. To afford optimization with respect to residuals,
consider the scalar function

v(e(i)) = eT(i)Pe(i)

+ δ−1
i−1∑

j=0

(rT(j)r(j)− δ2h•T(j)h•(j))

+ γ−1
i−1∑

j=0

(rT(j)r(j)− γ2dT(j)d(j))

> 0.
(36)

The last inequality to be satisfied for a positive definite
symmetric matrix P ∈ R

n×n and positive scalars γ, δ ∈
R. Then Δv(e(i)) is the change in v(e(i)) along a
trajectory e(i) determined by the observer dynamics and
it must yield

Δv(e(i)) = eT(i+ 1)Pe(i + 1)− eT(i)Pe(i)

+ γ−1rT(i)r(i)− γdT(i)d(i)

+ δ−1rT(i)r(i)− δh•T(i)h•(i)
< 0 .

(37)
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Since the main point is the need to analyze the effect
of the state error relation (24), (25), substituting

e(i+ 1) = F ee(i) + F ◦
Δh

•(i) +Ed(i) , (38)

where
F e = F − JC , (39)

into (37) gives

Δv(e(i))

= eT(i)(FT
e PF e − P )e(i)

+ eT(i)(γ−1CTRTRC + δ−1CTRTRC)e(i)

− γdT(i)d(i)− δh•T(i)h•(i)

+ eT(i)FT
e PF ◦

Δh
•(i) + h•T(i)F ◦T

Δ PF ee(i)

+ eT(i)FT
e PEd(i) + dT(i)ETPF ee(i)

+ h•T(i)F ◦T
Δ PEd(i) + dT(i)ETPF ◦

Δh
•(i)

+ h•T(i)F ◦T
Δ PF ◦

Δh
•(i) + dT(i)ETPEd(i)

< 0 .
(40)

For

eTΣ(i) =
[

eT(i) h•T(i) dT(i)
]

, (41)

the inequality given in (40) can be rewritten as

eTΣ(i)PΣeΣ(i) < 0 , (42)

where the negativity of (40) and (42) implies the negative
definiteness of the matrix

PΣ

=

⎡

⎣

FT
e

F ◦T
Δ

ET

⎤

⎦P
[
F e F ◦

Δ E
]

+

⎡

⎣

γ−1CTRTRC + δ−1CTRTRC − P 0 0
0 −δIn 0
0 0 −γIs

⎤

⎦

≺ 0.
(43)

It is then possible to convert (43) into one LMI
using Schur’s complement property (∗ is not used for
better visualization of LMIs structures in the proofs of this
section)

⎡

⎢
⎢
⎣

Π11 0 0 FT
e P

0 −δIn 0 F ◦T
Δ P

0 0 −γIp ETP
PF e PF ◦

Δ PE −P

⎤

⎥
⎥
⎦
≺ 0 , (44)

where

Π11 = γ−1CTRTRC + δ−1CTRTRC − P . (45)

When constructing the strict LMI by eliminating the
bilinear forms related to matrix variable R in (45), the
repeated application of yields the Schur complement
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P 0 0 FT
e P CTRT CTRT

0 −δIn 0 F ◦T
Δ P 0 0

0 0 −γIp ETP 0 0
PF e PF ◦

Δ PE −P 0 0
RC 0 0 0 −γIs 0
RC 0 0 0 0 −δIs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0 . (46)

Introduce the transform matrix (the unspecified
elements of the block matrix T are zero matrices)

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

In 0
0 In

0 0 Ip

In 0 0
0 0 0 Is

0 0 0 0 Is

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (47)

Pre-multiplying the left-hand side of (46) by TT and
post-multiplying the result by T then implies
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P FT
e P 0 0 CTRT CTRT

PF e −P PF ◦
Δ PE 0 0

0 F ◦T
Δ P −δIn 0 0 0

0 ETP 0 −γIp 0 0
RC 0 0 0 −γIs 0
RC 0 0 0 0 −δIs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0 . (48)

To get (39), we can write

PF e = PF − PJC (49)

and with the new matrix variable

Y = SJ . (50)

Note that (48) implies (34). This concludes the proof. �

Remark 4. The transformation defined by the matrix T
is introduced to obtain more comparable LMI structures,
related to different approaches applied in residual filter
parameter design. Note that a key property of linear
observers is that the map from a steady-state observer
error in the faulty free system to the solution e(i) ∈ R

n

related to the parametric fault on a given time interval is
always linear.

In particular, if no other special constraints are
considered, the following enhanced result is directly
implied.

Theorem 2. (Enhanced design condition) The Luenberger
observer (24), (25) is quadratically stable if there exist
positive definite symmetric matrices P ,S ∈ R

n×n, matri-
ces R ∈ R

s×s, Y ∈ R
n×s and positive scalars γ, δ ∈ R

such that

P = P T > 0, S = ST > 0, γ > 0, δ > 0, (51)



234 D. Krokavec and A. Filasová

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P ∗ ∗ ∗ ∗ ∗
SF−ZC P−2S ∗ ∗ ∗ ∗

0 F ◦T
Δ S −δIn ∗ ∗ ∗

0 ETS 0 −γIp ∗ ∗
RC 0 0 0 −γIs ∗
RC 0 0 0 0 −δIs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0 . (52)

When the above conditions are satisfied, compute

J = S−1Z (53)

and the residual generator gain matrix is defined directly
by the matrix variable R.

Proof. Transform (38) into a singular form such that

F ee(i) + F ◦
Δh

•(i) +Ed(i)− e(i + 1) = 0. (54)

Then, with an arbitrary symmetric positive definite square
matrix S ∈ R

n×n, we get

eT(i+1)S(Fee(i)+F ◦
Δh

•(i)+Ed(i)−e(i+1)) = 0 .
(55)

Adding (55) and its transposition to (37), we obtain
the condition

eT(i + 1)Pe(i+ 1)− eT(i)Pe(i)

+ eT(i)(γ−1CTRTRC + δ−1CTRTRC)e(i)

− γdT(i)d(i)− δh•T(i)h•(i)

− 2eTz (i + 1)Sez(i+ 1)

+ eT(i+ 1)S(F ee(i) + F ◦
Δh

•(i) +Ed(i))

+ (F ee(i) + F ◦
Δh

•(i) +Ed(i))TSe(i+ 1)

< 0 .

(56)

For

eTΞ(i) =
[

eT(i) eT(i + 1) h•T(i) dT(i)
]

, (57)

the inequality (56) can be rewritten as

eTΞ(i)P ΞeΞ(i) < 0 , (58)

where, with (45),

P Ξ =

⎡

⎢
⎢
⎣

Π11 FT
e S 0 0

SF e P − 2S SF ◦
Δ SE

0 F ◦T
Δ S −δIn 0

0 ETS 0 −γIp

⎤

⎥
⎥
⎦
≺ 0 . (59)

In much the same way as above, (59) can be
transformed to a strict LMI of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−P ∗ ∗ ∗ ∗ ∗
SF e P − 2S ∗ ∗ ∗ ∗
0 F ◦T

Δ S −δIn ∗ ∗ ∗
0 ETS 0 −γIp ∗ ∗

RC 0 0 0 −γIs ∗
RC 0 0 0 0 −δIs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0 . (60)

Specifically, we can set

SF e = SF − SJC (61)

and with the matrix variable

Z = SJ (62)

(60) implies (52). The proof is completed. �

Remark 5. Comparing (34) and (52), we can deduce
that residual filters become quadratically stable under
both feasible design conditions, but in the second case
the Lyapunov matrix P is decoupled from the system
parameters and the observer gain is defined using the slack
matrix S. Although the LMI structure seems slightly
complex at first glance due to the slack matrix existence,
the faulty changes in the system parameters reduce the
achievable performance in the design to a lesser extent.

There are parameter restrictions in the sense of H∞
optimization of the residual filter design task and the slack
matrix variable provides additional degrees of freedom,
which reduces the conservativeness. In general, it is
sufficient for the matrix S to be square and regular, but the
comparison of (30) and (48) shows that it is advantageous
for discrete-time systems if the matrix is symmetric and
positive definite (De Oliveira et al., 2002).

4. Application of the quadratic stability
principle

The quadratic stability principle can be applied if the fault
magnitude bounds are known. The following additional
lemma is presented to illustrate this case.

Lemma 2. (Krokavec and Filasová, 2021) Consider the
uncertain dual autonomous system

p(i + 1) = (F +ΔF (i))Tp(i) , (63)

ΔF (i) = V W (i)U , WT(i)W (i) � Is , (64)

where p(t) ∈ R
n and the system matrix parameters are

F ,ΔF (i) ∈ R
n×n, V ∈ R

n×s, U ∈ R
s×n, rank(V ) =

s, the elements ofW (i) ∈ R
s×s are Lebesgue measurable

(Khargonekar and Petersen, 1990) and V ,U are known.
Then (63) is quadratically stable if and only if there exist a
symmetric positive definite matrix Q ∈ R

n×n and a posi-
tive scalar λ ∈ R such that, conditioned by the inequality

−Q+ λUTU ≺ 0 , (65)

the set of linear matrix inequalities

Q = QT � 0 , λ > 0 , (66)
⎡

⎣

−Q QF QV

∗ −Q+ λUTU 0
∗ ∗ −λIs

⎤

⎦ ≺ 0 (67)

is feasible.
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This result implies the following relevant corollary.

Corollary 1. Solving the task with the zone arranged
parametric uncertainties as presented above, for (1) we
can set

ΔF (i) = V W (i)U , (68)

where
V = F ◦

Δ =
[

0 FΔ 0
]

, (69)

W (i) = diag
[
0 H(i) 0

]

, (70)

U = diag
[
0 N 0

]

, (71)

N = diag
[
n1 n2 · · · ns

]

, (72)

where V , W (i), U ∈ R
n×s and nj, j = 1, . . . , s are

known bounds of the faulty parameters in the given faulty
strip.

As far as the conditions of Corollary 1 are satisfied
with the admissible uncertainties, the following is
implied:

Theorem 3. The Luenberger observer (24), (25) is
quadratically stable if there exist a positive definite sym-
metric matrix Q ∈ R

n×n, matrices R ∈ R
s×s, X ∈

R
n×s and positive scalars λ, ξ ∈ R such that

Q = QT > 0 , λ > 0 , ξ > 0 , (73)

⎡

⎢
⎢
⎣

−Q QF −XC QV CTRT

∗ −Q+ λUTU 0 0
∗ ∗ −λIs 0
∗ ∗ ∗ −ξIs

⎤

⎥
⎥
⎦
≺ 0 , (74)

When the above conditions are satisfied, compute

J = Q−1X (75)

and the residual generator gain matrix is defined directly
by the matrix variable R.

Proof. Starting with (67), we can write

[−Q+ λ−1QV V TQ QF

FTQ −Q+ λUTU

]

≺ 0 , (76)

−Q+ λ−1QV V TQ

+QF (Q− λUTU)−1FTQ ≺ 0 . (77)

Pre-multiplying the left-hand side and
post-multiplying the result by P = Q−1 with ϑ = λ−1

then implies

−P +ϑV V T+F (P−1−ϑ−1UTU)−1FT ≺ 0 . (78)

For the Lyapunov function

v(p(i)) = pT(i)Pp(i) > 0 , (79)

Δv(p(i))

=− pT(i)Pp(i)

+ pT(i)(F +ΔF (i))P (F +ΔF (i))Tp(i)

<0 ,

(80)

it is evident that the approximation

pT(i)(F +ΔF (i))P (F +ΔF (i))Tp(i)

≤ pT(i)(F (P−1−ϑ−1UTU)−1FT

+ ϑV V T)p(i)

(81)

is realized.
Setting

r(i) = RCPp(i) . (82)

and assuming that ξ ∈ R+ is a positive scalar, we get

pT(i)PΘPp(i)

= ξ−1pT(i)PCTRTRCPp(i) ≥ 0 , (83)

where
Θ = ξ−1CTRTRC 	 0. (84)

Then can we set

Δv(p(i)) ≤ −pT(i)PΘPp(i) < 0 . (85)

Applying (84) and (85), (78) is modified as

− P + PΘP + ϑV V T

+ F (P−1 − ϑ−1UTU)−1FT ≺ 0 . (86)

Pre-multiplying the left-hand side and
post-multiplying the result by Q = P−1, and then
substituting ϑ−1 = λ, yield

−Q+ ξ−1CTRTRC + λ−1QV V TQ

+QF (Q− λUTU)−1FTQ ≺ 0 . (87)

This implies
[

Θ−Q+ λ−1QV V TQ QF

∗ −Q+ λUTU

]

≺ 0 , (88)

⎡

⎣

Θ−Q QF QV

∗ −Q+ λUTU 0
∗ ∗ −λIs

⎤

⎦ ≺ 0 , (89)

⎡

⎢
⎢
⎣

−Q QF QV CTRT

∗ −Q+ λUTU 0 0
∗ ∗ −λIs 0
∗ ∗ ∗ −ξIs

⎤

⎥
⎥
⎦
≺ 0 , (90)

respectively.
Replacing F by F e and analogously introducing the

new variable QJ = X , from (90) we get (74), which
concludes the proof. �

This technique, as well as the H∞ norm structures
outlined in the preceding section, give some new insights
into the single multiplicative fault detection.
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5. Illustrative example

To apply the results of Theorems 1–3 to the synthesis of
residual filters, consider the system (1)–(3) with the strip
column rank s = 2, the sampling period ts = 0.02 s, the
system disturbance having normal distribution with zero
mean and variance σ2 = 0.05, and the model parameters

F =

⎡

⎢
⎢
⎣

0.9324 0 0.1109 0.0990
0.0062 0.9197 0.0226 0.0002
0.0185 0 0.8744 0.0867
0.0001 0.0428 0.0001 0.9467

⎤

⎥
⎥
⎦
,

F ◦
Δ =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 0

⎤

⎥
⎥
⎦
, E =

⎡

⎢
⎢
⎣

0.0547
0.0621
0.0725
0.0267

⎤

⎥
⎥
⎦
,

G =

⎡

⎢
⎢
⎣

0.0081 0.0043
0.0110 0.0041
0.0028 0.0063
0.0025 0.0034

⎤

⎥
⎥
⎦
, h(i) =

⎡

⎢
⎢
⎣

0
h1(i)
h2(i)
0

⎤

⎥
⎥
⎦
,

C =

[

0 1 0 0
0 0 1 0

]

, Cy =

[

1 0 0 0
0 0 0 1

]

.

The matrix of multiplicative fault amplitudes and the fault
amplitude bounds are

H◦(i) = diag
[
0 h1(i) h2(i) 0

]

,

hj = 0.001, hj = 0

for j = 1, 2. The system is stable and the system working
point in simulations is set up by the forced mode rule

u(i) = Nww,

which assigns the system output to the desired steady state
value yo = w, while

Nw = (Cy(In − F )−1G)−1

=

[−18.7567 77.7863
25.3041−101.1829

]

,

wT =
[
1 2

]

.

Programming (73) and (74) in the SeDuMi toolbox
decomposes the feasible design problem using the set of
LMI variables Q ∈ R

n×n, R ∈ R
s×s, X ∈ R

n×s, λ, ξ ∈
R. The obtained values are

λ = 1.3005 , ξ = 0.8388 ,

Q =

⎡

⎢
⎢
⎣

0.8074 −0.0026 −0.0442 0.1131
−0.0026 0.3849 −0.0169 0.0016
−0.0442 −0.0169 0.2585 −0.0454
0.1131 0.0016 −0.0454 1.2716

⎤

⎥
⎥
⎦
� 0 ,

X =

⎡

⎢
⎢
⎣

0.0051 0.0920
0.3469 −0.0052

−0.0165 0.2175
0.0538 0.0161

⎤

⎥
⎥
⎦
,

R = 10−9

[−0.3198 −0.1738
0.0283 −0.0024

]

.

It can be easily shown that (75) yields

J =

⎡

⎢
⎢
⎣

0.0036 0.1578
0.9012 0.0258
0.0028 0.8753
0.0410 0.0299

⎤

⎥
⎥
⎦

and using (39), expressing the summarized behaviour of
all estimated variables, the observer dynamics is defined
by the observer system matrix and its eigenvalues

F e =

⎡

⎢
⎢
⎣

0.9324 −0.0036 −0.0489 0.0990
0.0062 0.0185 −0.0032 0.0002
0.0185 −0.0028 −0.0009 0.0867
0.0001 0.0018 −0.0298 0.9467

⎤

⎥
⎥
⎦
,

ρ(F e) =
{
0.0023 0.0190 0.9327± 0.0024 i

}

.

Following the algorithm defined by Theorem 1, we
get the residual filter parameters

R = 10−3

[−0.0016 0.0053
0.0048 −0.1002

]

,

J =

⎡

⎢
⎢
⎣

0.1691 0.2395
0.7886 0.0192
0.0055 0.8377
0.0705 0.0774

⎤

⎥
⎥
⎦
,

F e =

⎡

⎢
⎢
⎣

0.9324 −0.1691 −0.1296 0.0990
0.0062 0.1311 0.0034 0.0002
0.0185 −0.0055 0.0367 0.0867
0.0001 −0.0277 −0.0773 0.9467

⎤

⎥
⎥
⎦
,

ρ(F e) =
{
0.0466 0.1324 0.9339± 0.0109 i

}

.

For the same problem data, but with the solution according
to Theorem 2, we obtain

R = 10−8

[−0.3895 0.4208
−0.0327 0.2419

]

,

J =

⎡

⎢
⎢
⎣

0.1514 0.2781
0.8076 0.0207
0.0054 0.8284
0.0672 0.1028

⎤

⎥
⎥
⎦
,

F e =

⎡

⎢
⎢
⎣

0.9324 −0.1514 −0.1672 0.0990
0.0062 0.1121 0.0019 0.0002
0.0185 −0.0054 0.0460 0.0867
0.0001 −0.0244 −0.1027 0.9467

⎤

⎥
⎥
⎦
,

ρ(F e) =
{
0.0593 0.1133 0.9323± 0.0129 i

}

.



On some ways to implement state-multiplicative fault detection . . . 237

From these results it is immediately clear that all the
presented algorithms retain the unchanged first and fourth
columns of the system dynamics matrix F even in the
structures of the observer dynamics matrices F e. On the
other hand, they set the robustness of the second and third
columns (sector columns) of the observer matrices F e,
which in F are exposed to parametric faults. It is also
clear that the residual fault filter designed according to
Theorem 3 has the fastest dynamics, but the disadvantage
is that its application requires measuring all system state
variables, as it follows from the relation (82).

To carry out simulations, demonstrating fault
residual filter properties, single multiplicative faults with
formal description by the step-like activation of h1(i) =
0.001 while h2(i) = 0, as well as when h2(i) = 0.001
while h1(i) = 0, respectively, are considered in their own
time scale from the time instant t = 3 s. To remove
additive dynamics in the responses, all initial states in
simulation are set to zero.

The fault residuals time evaluations are depicted in
Figs. 1–3, which show that the residual filters achieve very
good time responses and stability performances, which
clearly confirms the theoretic analysis. In order for the
results of all methodologies to be comparable, the output
of each residual filter is normalized by its corresponding
norm ‖R‖. The system model parameters are defined to
show cases where the parametric fault is acting on the
different column element structure in the fault sector.

The residual fault filter designed according to
Theorem 3 has the best directional properties, but
in addition to the disadvantage mentioned above, the
disturbance is not taken into account in its synthesis, so
its use is always determined by the specific situation.

The remaining two methods reflect in the design
conditions the upper bound of the H∞ norm of the
transfer matrix functions related to the sector faults and
the external disturbances. The H∞ norm adjustment by
LMIs is optimal in the terms of the given row sector
structure.

The tenable conclusion is that parametric faults of
values of the order of 10−3 can be detected using the
proposed residual structure, even if they do not cause
system instability.

6. Concluding remarks

Observer based fault residual structures for discrete-time
linear systems with single multiplicative system faults,
have been considered. Because the elements of the
system matrix change after the occurrence of a fault, the
different synthesis starting points allow enough flexibility
to guarantee stability and preferred dynamic properties
of the observer structure, as well as satisfactory residual
signal sensitivity. Three synthesis algorithms have been
proposed being feasible in terms of standard numerical

operations regarding linear matrix inequalities. They are
completely model based and convenient to use.

In the used configurations, the problem is resolved
with respect to measurable state variables having input
coincidence with the multiplicative fault parameter
structure. The number of residual signals may be equal
to the number of control related outputs, as defined for
control system performance. In addition, due to partial
elimination, estimates of the state and the output vector
can be preserved from disturbance disruptions.

This concept is also matched by the choice of the
system model in the illustrative example. In order to
achieve the independence of the fault residual filter time
responses from the control structure, a stable system is
used for the simulations with the working mode setting by
the forced mode principle. The existence of a potential
set of residual filters, reflecting the complementary
segmentation of the fault matrix structure, forms a basis
for future research directions.

The presented results remain valid for parametric
fault detection as long as the sector state variable are
measurable for FDI constructions. This constitutes an
important step in the solution of the problem. The
relaxation of the quadratic stability principle remains
an open problem if not all sector state variables are
measurable and will be a topic of future research. Further
research will be carried out towards the effectiveness
of the proposed methods in practical applications in the
distributed systems diagnosis.
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