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ARITHMETIC MODELLING — A LINK BETWEEN

DISCRETE-TIME SYSTEMS AND BINARY
PROCESS CONTROL

DiETER FRANKE*

The paper addresses finite state machines which provide suitable mathematical
models for discrete-event dynamical systems. Boolean automata are of partic-
ular interest. In contrast to the classical automata theory, an arithmetic repre-
sentation of Boolean functions is used based on multilinear polynomials. By this
technique, finite automata are embedded in the Euclidean vector space, which
makes it possible to find a closer relationship between discrete-event systems
and. classical discrete-time systems. The problem of self-regulation of binary
dynamic systems is interpreted in terms of feedback control structures with
a focus on two special classes of systems. First, systems which are linear with
respect to state and control are studied within the framework of the classical
state space theory. Then systems which are linear in the control and multilinear
in the state are considered. It is shown that multilinear state feedback can be
utilized to globally linearize the overall system. The design equations turn out
to be linear with respect to the controller parameters in this case.

1. Introduction

The state equations of a finite Boolean automaton (Booth, 1967; Bochmann, 1975),
z(k+1) = fla(k), u(k)] (1)
y(k) = g[z(k), u(k)] (2)

with input u € B?, state & € B"™ and output y € B? resemble those of a classical
discrete-time system. The main difference is the use of Boolean algebra in functions
f and grather than arithmetic operations, since the components of u,z and ¥y are
logical variables taking only values 0 and 1.

However, an arithmetic representation of Boolean functions which has been used
in Boolean reliability theory so far (Stérmer, 1970; Reinschke, 1973) has been also
employed by Franke (1992; 1993; 1994) for a novel approach to binary dynamic sys-
tems. Any completely specified Boolean function y = f(z) = f(z1,...,2,) can be
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written uniquely as a multilinear polynomial
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It has the same structure as classical Shegalkin polynomials (Shegalkin, 1928) but
uses arithmetic operations.

The number of coefficients appearing in this equation is N = 2" which agrees
with the number of rows of the sequence table of y = f(2). Therefore, given any
completely specified sequence table, the coeflicients are determined uniquely by solving
a set of linear algebraic equations.

Consider a simple case when n = 2,

y = f(x1,22) = ag + a1z1 + a222 + 122127

Let the switching Table 1 be given, with given binary values y™®), ... y(¥.

Then the corresponding coefficients must satisfy the equation
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Tab. 1. Switching table for y = f(z1, z3).
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In the past, this type of modelling Boolean functions has only been used in Boolean
reliability theory. It does, however, also apply to functions f(x,u) and g(x,u)
appearing on the right-hand sides of eqns. (1) and (2), respectively. This makes
finite-state machines much closer related to classical discrete-time systems than it
was assumed in the past and provides a novel access to analysis and design of binary
dynamical systems.

2. Arithmetically Linear Boolean Functions and Automata

There is an appealing class of special systems which have a simple structure even in
higher dimensions: arithmetically linear sysiems. The state equations of an arith-
metically linear automaton have obviously the general form

z(k + 1) = Az (k) + Bu(k) + ao (M)
y(k) = Cz(k) + Du(k) + co (8)

where A, B,C and D are constant matrices of appropriate dimensions, and ayg, cg
are n-dimensional constant vectors.

Consider as a simple practical example the Boolean switching table (Table 2) of
a pneumatic positioning cylinder widely used in manufacturing processes.

Tab. 2. Boolean switching table for positioning cylinder.

z(k) | u(k) | z(k+1)
0 0 0
0 1 1
1 0 0
1 1 1

Here z(k) is the Boolean state of the cylinder (z = 0 retracted, z = 1 extended) at
step k, and u(k) is the Boolean control applied at step k. Obviously, the Boolean
state equation for this system is arithmetically linear,

z(k +1) = u(k)

The arithmetically linear automaton just introduced is completely specified. Its lin-
earity results from the special feature that all the coefficients of multilinear terms
in eqn. (3) vanish. There is, however, another important class of automata, namely
incompletely specified automata, which sometimes can be made algebraically linear
by setting certain coefficients equal to zero.

Incompletely specified Boolean functions arise whenever one or more rows of
the sequence table can be excluded by knowledge or is forbidden to occur. As an
example, consider Table 1 with the first row being excluded. Based on the notation
used in eqn. (4), eqn. (6) does not apply directly, since () is unspecified. However,
the solution of the underdetermined set of equations can be made unique by setting
aja = 0. This makes, on the one hand, y = f(z1,22) = ao + 121 + agzy strictly
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linear, and, on the other hand, specifies y() = y(2) + y® — y(*), The value of y¥)
will not in general be binary. For y® = y(® =1, y*) =0 we obtain y) = 2 and
hence ag = 2, a; = az = —1. Therefore, y = f(z1,23) = 2— 21 —z2 in this example.

The automaton described by eqns. (1), (2) with dimensions n,p and ¢ for the
state z, control w and output y, respectively, is said to be incompletely specified,
if only a subset of rows is admitted in the sequence table.

An important class of incompletely specified automata are those which allow only
a subset of 2" entries of . In such an automaton, the control u(k) is said to be
applicable to the state x(k) if z(k + 1) = flx(k),u(k)] also belongs to the allowed
subset.

3. Arithmetically Linear Feedback Control

In many situations, a prescribed cyclic operation of a binary dynamical system is
required, and therefore the problem of self-regulation of the process arises. If the
required period of the cycle is given as

kp <27 9)
where n is again the dimension of the state vector x, the process to be designed is
incompletely specified.

The problem to be considered is the following: given an arithmetically linear bi-
nary process described by eqns. (7), (8), does there exist a non-dynamic arithmetically
linear state feedback

u(k) = ro + Rx(k) (10)
or a dynamic one,
u(k) =ro+ Ra(k)+ Y _ Ryx(k—v), m<k (11)
v=1

such that the preassigned cyclic behaviour with the period k, of the closed-loop
system will be achieved?

3.1. Non-dynamic State Feedback

In the case of a prescribed period k, < 2", the required sequence of k, cyclic states
and the corresponding controls can be written as an incompletely specified Boolean
switching table. Now, by using the trial constant state feedback law (10),

u(k) = Re(k) + o

a set of arithmetically linear equations is obtained for the coefficients of this control
law. Therefore, whenever this set of equations has a solution, a non-dynamic state
feedback described by eqn. (10) exists and can be computed from these equations.

Consider as an example three positioning cylinders described by Table 2, which
are required to operate in a cycle with the period &, = 6 according to Table 3.
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Tab. 3. Cyclic operation of three positioning cylinders.

z3(k) | z2(k) | z1(k) | ua(k) | ua(k) | ui(k)
1. 1 0 0 1 0 1
2. 1 0 1 0 0 1
3. 0 0 1 0 1 1
4. 0 1 1 0 1 0
5. 0 1 0 1 1 0
6. 1 1 0 1 0 0

In this example, a constant state feedback (10) exists, and the solution is

0 -1 0
R: 0 0 _1 ) To = 1
1 0 0

3.2. Dynamic State Feedback

A constant state feedback law (10) may not exist due to failure of the underlying rank
condition for the set of linear equations. In this case, a trial dynamic state feedback
is proposed according to (11),

m
u(k) = Rx(k) + ZR,,:::(k —v)+ry, m<k

v=1
using delayed values x(k — v) in addition to (k). The switching table for cyclic
operation is augmented by columns x(k — v), thus yielding an augmented set of
arithmetically linear equations for the coefficients of the control law (11).

Whenever the rank condition for solvability of these equations can be satisfied

for some m, a dynamic state feedback (11) exists and can be computed from these
equations.

Table 4 outlines an example with two positioning cylinders which operate in a
cycle with k, = 6.

Tab. 4. Example for dynamic state feedback.

zo(k —2) | z1(k—2) | za(k) | z1(k) | uwa(k) | ur(k)
1. 0 0 0 0 0 1
2. 1 0 0 1 1 1
3. 0 0 1 1 0 1
4. 0 1 0 1 0 0
5. 1 1 0 0 1 0
6. 0 1 1 0 0 0
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A constant state feedback (10) does not exist in this example, since k, > 2". How-
ever, by augmenting the table by the delayed state ®(k — 2), the rank condition is
satisfied and the controller is readily obtained as.

1

0

In the general case, the right-hand sides of (1), (2) cannot be expected to be rep-
resentable as arithmetically linear functions. This is especially true for completely.
specified machines to be considered in the subsequence. For the study of this type of
systems the following notation of a completely specified Boolean function y = f(z)

proves to be convenient.

-1 0

u(k): [ 0 1

}m(lc—-2)+

4. Arithmetically Multilinear Automata

Since the polynomial is linear (in the arithmetic sense) with respect to its 27
coefficients, f(x) can be written as an inner product

y=f(z) =p" (z)a (12)

where the coefficients are assumed to be arranged in the vector a in the same order
as they appear in (3). Therefore we obtain in the case n = 1:

p'(z) = [1,2), o’ =[ao,ai]
in the case n = 2:
P (z) = (L2125, 2175], a” =[ao,a1,02,0a15)
in the case n = 3:
P’ (z) = [1, 21,22, 73, 2122, 2123, 2273, 212273
a” = [ao, a1, a2, a3, a1, a13, @23, @123

etc. It can be seen that the structure of the vector p(z) depends only on the number
n, whereas the vector @ depends only on the concrete Boolean function.

Consider two completely specified Boolean functions of = € B",
v1 = filz) =p'(z)a, y:= fo(z) =p (z)b

Since the arithmetic product y = y;y2 is obviously a completely specified Boolean
function as well, it can be written as

y=41 32 =p" (x)c = p”(z)ap” (z)b (13)
Due to the idempotence property, 2 = z;, evaluation of (13) will always yield

P’ (z)ap” (z)b = p” (z)B(a, b) (14)
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and hence
¢ = f(a,b) (15)

where the components of 3 are bilinear in the components of @ and b. To be specific,
one obtains in the case n = 1:

co = apby, c¢1 = aoby + a1(bo + b1) (16)
in the case n=2:

co = agbo, c1 = aoby + ai(bo + b1), c2 = agbz + az(bo + b2)

17
c12 = aobia + a1(by + b1z) + az(b1 + b1z) + a12(bo + b1 + by + b13) (17)

etc.

The arithmetic representation of Boolean functions described above can be intro-
duced into the right-hand sides of (1), (2), which yields multilinear polynomials with
respect to the components of u(k) and x(k). Since the concepts of state feedback
will be considered below, discussion will be confined to eqn. (1) in the subsequence.
Due to its multilinear structure this equation can obviously be written as

e(k+1) = [Ao+ ) Auuu(k)+ yz—:A,wuu(k)uy(k)—f-

pu=1 v=2 p=1

+ Alz,,,pul(k)uz(k)...up(k)] pla(k)] (18)

which means separation of w and x. Again the vector p(z) depends only on the de-
gree n of the system whereas the matrices A are specified by the concrete sequential
machine.

There are quite interesting special cases contained in (18), e.g. systems which are
linear with respect to the conirols:

a(k+1) = [Ao +¥ Auuu<k>J pla(k)] (19)

p=1

In what follows the class of systems (19) will be discussed subject to feedback control.

5. Multilinear State Feedback Control

In the classical control theory, it is quite common to achieve a desired plant behaviour
via feedback control. Especially, the concepts of state feedback offer a large variety
of design objectives and design procedures. Therefore the concept of non-dynamical
state feedback will be applied to the automaton (1) using arithmetic notations for
both the binary process and the binary controller. By means of the inner product
notation introduced in (12) the Boolean state feedback law can always be written as

u(k) = R plz(k)] (20)
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where R is a constant matrix of appropriate dimensions. The matrix R is, of course,
not yet specified, whereas the matrices A of the binary process (18) are assumed to be
known. The binary control law (20) can be viewed as a rule basis for the process (18).

The components of the control law (20) are
uu(k) = riple(k)] = p" [2(k)lry, p=1,.p (21)
T

where 7, is the p-th row of the matrix R. By inserting (21) into the plant equa-
tion (18) it can be seen that the closed-loop system is an autonomous automaton
whose state equation in view of (14), (15) can be written as

2(k +1) = A pla(k)] (22)

where A is a constant n x 2" matrix whose elements are multilinear functions of
the controller parameters. However, in the special case of a plant which is linear with
respect to the controls according to (19), the elements of A are obviously linear with
respect to the controller parameters. Only this special case will be considered in the
sequel.

6. Global Linearization

In the special case of a scalar control u(k), eqn. (18) is always linear with respect
to u. In (Franke, 1993) it is shown in an exemplary discussion that, in this case,
multilinear state feedback can be designed in such a way that all the multilinear
terms are cancelled out in the closed-loop system. Hence this is a global linearization
technique. The resulting linear state equations can be treated like a classical discrete-
time system. Free controller parameters can be utilized to achieve a specified cyclic
behaviour, the notion of eigenvalues playing a central role.

The present approach is a more systematic extension to the multi-input case
according to eqn. (19). By inserting the control law (21) into (19) one obtains the
overall system

4
o(k+1) = [Ao + A PT[z(k)]Tu] plz(k)] (23)

p=1

whose i-th component in view of (14), (15) reads

zi(k+1)

[a% + Z aiTu PT[z(k)]"'u] plz(k)]

»
p! [x(k)] l:a,-o + Zﬁ(r“, a,-,‘)] , i= 1,‘...,n (24)

With regard to the notation of the vector p(z) introduced in (12), it is obvious that
p() with the first n+41 components of p is linear with respect to =, and p® with
the remaining components is multilinear. Therefore, by using partitioning,

P'(2) = [p7(2), ¥ (=), afy = [T, 0], B = [8V7, 5]
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the conditions for global linearization are

P
ag(z))‘*'zﬁ(z)("u,aip) =0, i=1,..,n (25)
p=1

and the resulting globally linear system is

?
zi(k +1) = pOT (k)] [als) + 3 BV (ry,ai0)|, i=1,.,n  (26)

p=1

Equations (25) are a set of n(2" — n — 1) scalar linear equations for p2™ controller

parameters. It will provide solutions whenever
2" —n-—1

If the set of equations is underdetermined, the degrees of freedom can be utilized so
as to achieve different cyclic behaviours of the autonomous automaton (26).

Example. Consider the discrete-event system with = € B2, u € B?, given by its com-
pletely specified switching Table 5. The equivalent arithmetic representation turns
out to be linear with respect to controls u; and wus.

Tab. 5. Switching table for a binary process with = € B, u € B2.

ug(k) | ua(k) | z2(k) | z1(k) | z2(k+1) | z1(k+ 1)
0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 1 0
0 1 0 0 0 1
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 1 0
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 1
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Linearity conditions (25) for the overall system take here the form
—“142ro+r1+ri2+rz1+re2+r212=0
—14+2ro+ri1+r2—r21—r22—r212=0

and the resulting globally linear system according to (26) is

-

o — i — 1—

2(k+1) = r10—T1,1+ 720 ri0—ri,2+ 7120 (k) + r2,0
l=rio—rii—rz0 l-ro—riz—rao | r

It allows the following solutions for completely specified Boolean automata:

2) z(k+1):[(1) ‘;]z(k)+“} b) a(k+1)= ‘(1) 2]z(k)+[;]

c) . z(k+1)=[(1) _(1)]2(k)+[2] d) =z(k+1)= _(1) (l)]z(k)+[(l)]

For system (a) the controller equations are u;(k) = z(k), uz(k) = 0, and the
periodic sequence of the states is

HE BB HE

The period k, = 4 reflects the conjugate complex pair of the eigenvalues :\'1 j2 =]
of the system.

For system (b) the controller equations are u;(k) = z1(k), u2(k) = 0, and the
periodic sequence of the states is

HEBREE

whose period k, = 2 corresponds to the eigenvalue Xl =-1.

For system (c) the controller equations are u;(k) = z(k),u2(k) = 1, and the
periodic sequence of the states is

HEHEHE

whose period k, =2 corresponds to the eigenvalue X2 =-1.
For system (d) the controller equations are uj(k) = z1(k),u2(k) = 1, and the
periodic sequence of the states is

HEHEHEHRHE
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again with the period k, =4 and the eigenvalues Ay = %j.

It is emphasized that there is no need to construct the reachability graph in
order to apply the method proposed above. On the other hand, the reachability
graph allows verification of the results. Figure 1 shows the reachability graph for the
above example. It exhibits six possible cycles, four of which have been found above.
The remaining two cycles cannot be modelled by arithmetically linear automata.

0 w= |1
=10
up=1]Tuy=1 up=0_Tuz=
ol wes [

Fig. 1. Reachability graph.

7. Conclusions

An approach to sequential finite state machines has been proposed based on arith-
metic representations of Boolean functions. This allows bridging the gap between the
discrete-event dynamic systems and the classical discrete-time systems since the same
algebra is used. Rule-based control of finite automata has been formulated within the
framework of the classical control theory. As a special aspect, global linearization via
feedback control has been considered for binary dynamic systems whose arithmetic
state equations are linear with respect to the controls.
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