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ROUGH SET-BASED DIMENSIONALITY REDUCTION

FOR SUPERVISED AND UNSUPERVISED LEARNING

Qiang SHEN∗, Alexios CHOUCHOULAS∗

The curse of dimensionality is a damning factor for numerous potentially
powerful machine learning techniques. Widely approved and otherwise elegant
methodologies used for a number of different tasks ranging from classification to
function approximation exhibit relatively high computational complexity with
respect to dimensionality. This limits severely the applicability of such tech-
niques to real world problems. Rough set theory is a formal methodology that
can be employed to reduce the dimensionality of datasets as a preprocessing
step to training a learning system on the data. This paper investigates the utili-
ty of the Rough Set Attribute Reduction (RSAR) technique to both supervised
and unsupervised learning in an effort to probe RSAR’s generality. FuREAP, a
Fuzzy-Rough Estimator of Algae Populations, which is an existing integration of
RSAR and a fuzzy Rule Induction Algorithm (RIA), is used as an example of a
supervised learning system with dimensionality reduction capabilities. A similar
framework integrating the Multivariate Adaptive Regression Splines (MARS)
approach and RSAR is taken to represent unsupervised learning systems. The
paper describes the three techniques in question, discusses how RSAR can be
employed with a supervised or an unsupervised system, and uses experimental
results to draw conclusions on the relative success of the two integration efforts.

Keywords: knowledge-based systems, fuzzy rule induction, rough dimension-

ality reduction, knowledge acquisition

1. Introduction

With the widening availability and small size of modern computer systems, intelligent
learning systems are rapidly gaining popularity for wide ranges of applications. Learn-
ing systems have found their way to all manners of application domains: the stock
market, financial customer modelling and risk assessment, industrial monitoring and
control, assembly robotics, global and personal information retrieval and filtering, and
even computer games. This success is easily explained by the fact that learning sys-
tems are cost-effective when they are applicable. The price of computing equipment
has dropped dramatically over the past decade, while the time of human experts has
remained steadily expensive. Having even a fraction of the knowledge of a highly paid
and competent consultant built into a computation system is clearly very desirable.

∗ Institute for Representation and Reasoning, Division of Informatics, The University of Edin-

burgh, Edinburgh EH1 1HN, U.K. e-mail:
�
qiangs,alexios � @dai.ed.ac.uk



584 Q. Shen and A. Chouchoulas

In addition, a system that learns automatically from historical data typically works
faster than a human expert. For instance, in cases like information retrieval and fil-
tering (van Rijsbergen, 1979), the expert librarian is simply unable to cope with the
onslaught of information that a computer can handle.

Learning systems are generally divided into three broad categories based on the
way they are trained and used: supervised learning systems, unsupervised learning
systems, and reinforcement learning systems (Mitchell, 1997). Whatever the char-
acteristics of learning systems, however, all suffer from one problem that plagues
computer systems: intractability. With learning systems, there are two major param-
eters of complexity leading to intractable behaviour: the number of attributes in an
application domain, namely dimensionality , and the number of examples in a dataset.
The latter typically applies only to the training stage of the system and, depending
on intended use, may be acceptable. Data dimensionality, on the other hand, is an
obstacle for both the training and runtime phases of a learning system. Many systems
exhibit non-polynomial complexity with respect to dimensionality, which imposes a
ceiling on the applicability of such approaches, especially to real world applications,
where the exact parameters of a relation are not necessarily known, and many more
attributes than needed are used to ensure all the necessary information is present.
The curse of dimensionality effectively limits the applicability of learning systems to
small, well-analysed domains, rendering otherwise elegant methodologies incapable of
performing satisfactorily on arbitrary domains.

Rough set theory (Pawlak, 1991) is a formal methodology that can be employed
to reduce the dimensionality of datasets as a preprocessing step to training a learning
system on the data. Rough Set Attribute Reduction (RSAR) works by selecting the
most information rich attributes in a dataset, without transforming the data, all the
while attempting to lose no information needed for the classification task at hand
(Chouchoulas and Shen, 1998; Shen and Chouchoulas, 2000). The approach is highly
efficient, relying on simple set operations, which makes it suitable as a preprocessor for
techniques that are more complex. Unlike statistical correlation-reducing approaches,
RSAR requires no human input or intervention, or fine-tuning of parameters. The
advantages of dimensionality reduction extend to the runtime of the system. By re-
quiring fewer observations per datum, the reduced dimensionality learning system
becomes more compact and its response time decreases. The cost of obtaining data
drops accordingly, as fewer connections to instrumentation need be maintained. Fi-
nally, the overall robustness of the system increases, since, with fewer instruments,
the chances of instrumentation malfunctions leading to spurious readings are reduced
dramatically. RSAR also retains the semantics of the data, which makes the technique
more transparent to human scrutiny, while it enhances any systems that benefit from
semantics, such as fuzzy systems (Zadeh, 1975).

This paper investigates the application of RSAR to both supervised and unsuper-
vised learning, in an effort to produce a generic, flexible framework for dimensionality
reduction. Two separate systems are built, using supervised and unsupervised learn-
ing, respectively. Lozowski’s fuzzy Rule Induction Algorithm (RIA) (Lozowski et al.,
1996) is used as an example of a supervised learning system. Friedman’s Multivariate
Adaptive Regression Splines (MARS) (Friedman, 1991) are employed to represent
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unsupervised learning systems. To gauge the success of the two integrated systems,
they are used to build a model of river algae growth as influenced by changes in
the concentration of several chemicals in the water. The success of the application is
demonstrated by the reduction in the number of measurements required, in tandem
with accuracy that matches very closely that produced by training on the original,
unreduced dataset.

The paper describes rough set theory and RSAR, as well as the chosen represen-
tatives of supervised and unsupervised learning. The algae application domain and
its adaptation for use by the two systems are discussed, followed by detailed exper-
imental results showing how RSAR manages to reduce dimensionality by losing as
little information as possible.

2. Background

2.1. Rough Set Theory and RSAR

Rough set theory (Pawlak, 1991) is a formal mathematical tool that can be applied to
reducing the dimensionality of datasets. The rough set attribute reduction (RSAR)
method removes redundant input attributes from datasets of discrete values, all the
while making sure that no information is lost. The approach is fast and efficient,
making use of standard operations from conventional set theory.

To demonstrate the RSAR algorithm, an example will be followed through. Sup-
pose that a dataset � is viewed as a table, where attributes are columns and objects
are rows, as in Table 1 (adapted from (Pawlak, 1991)). Let U denote the set of all
objects in the dataset, A the set of all attributes, C the set of input attributes,
and D the set of output attributes. Thus, in this example, U = {0, 1, 2, 3, 4, 5, 6, 7},
A = {a, b, c, d, e}, C = {a, b, c, d}, and D = {e}.

Table 1. An example dataset.

x ∈ U a b c d e

0 1 0 2 2 0

1 0 1 1 1 2

2 2 0 0 1 1

3 1 1 0 2 2

4 1 0 2 0 1

5 2 2 0 1 1

6 2 1 1 1 2

7 0 1 1 0 1

The value of attribute q ∈ A in object x ∈ U is written as f(x, q), which defines
an equivalence relationship over U . With respect to a given q, the function partitions
the universe into a set of pairwise disjoint subsets of U

Rq = {x : x ∈ U ∧ f(x, q) = f(x0, q) ∀ x0 ∈ U}.
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For instance, for the discussed example, Ra = {{1, 7}, {0, 3, 4}, {2, 5, 6}}.

Consider a subset of the set of attributes, P ⊂ A. Two objects numbered x and
y in U are indiscernible with respect to P if and only if f(x, q) = f(y, q) ∀ q ∈ P .
The indiscernibility relation for all P ∈ A is written as IND (P ). U/IND (P ) is used
to denote the partition of U given IND (P ) and is calculated as

U/IND (P ) =
⊗

{

q ∈ P : U/IND (q)
}

,

where

A⊗B = {X ∩ Y : ∀ X ∈ A, ∀ Y ∈ B, X ∩ Y 6= ∅}.

For instance, if P = {b, c}, objects 0 and 4 are indiscernible; 1, 6 and 7 likewise.
The rest of the objects are not. This applies to the example dataset as follows:

U/IND (P ) = U/IND (b)⊗U/IND(c)

=
{

{0, 2, 4}, {1, 3, 6, 7}, {5}
}

⊗
{

{2, 3, 5}, {1, 6, 7}, {0, 4}
}

=
{

{2}, {0, 4}, {3}, {1, 6, 7}, {5}
}

.

If P = {a, b, c}, then, similarly U/IND (P ) = U/IND (a)⊗ U/IND (b)⊗ U/IND (c).

Rough sets approximate traditional sets by using a pair of sets, named the low-
er and upper approximations of the set in question. The lower and upper approx-
imations of a set P ⊆ U (given an equivalence relation IND (P )) are defined as
PY =

⋃

{X : X ∈ U/IND (P ), X ⊆ Y } and PY =
⋃

{X : X ∈ U/IND (P ), X ∩Y 6=
∅}, respectively. Assuming that P and Q are equivalence relations in U , the posi-
tive region POSP (Q) is defined as POSP (Q) =

⋃

X∈Q PX . A positive region con-
tains all the objects in U that can be classified into attribute set Q using the in-
formation in attribute set P . For example, assuming P = {b, c} and Q = {e},
POS IND(P )(IND (Q)) =

⋃

{{}, {2, 5}, {3}}= {2, 3, 5}.

What this means is that, with respect to input attributes b and c, objects 2,
3 and 5 can definitely be classified in terms of output attribute e. The remaining
objects could, possibly, be classified, but this is not certain. The degree of dependency
of a set Q of output attributes on a set of input attributes P is defined as γP (Q) =

‖POSP (Q)‖× ‖U‖
−1, where ‖A‖ denotes the cardinality of set A. The complement

of γ gives a measure of the contradictions in the selected subset of the dataset. If
γ = 0, there is no dependence; for 0 < γ < 1, there is a partial dependence. If γ = 1,
there is complete dependence.

It is now possible to define the significance of an attribute. This is done by
calculating the change of dependency when removing the attribute from the set
of considered input attributes. Given P , Q and an attribute x ∈ P , σP (Q, x) =
γP (Q)− γP−{x}(Q). The higher the change in dependency, the more significant x is.
This allows the calculation of the significance of any input attribute, for instance a
as σP (Q, a) = γ{b,c}({e}) = 1/8.
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This shows that attribute a is not indispensable, having a significance of 0.125,
while attributes b and c can be dispensed with, as they do not provide any informa-
tion that is significant for the classification of the data objects into the class values
in e.

Attribute reduction involves the removal of attributes that have no significance
to the classification at hand. An attribute reduct set (or simply reduct) is then defined
as a subset R of the set of input attributes C such that γC(D) = γR(D). For the set
of output attributes D, it is obvious that a dataset may have more than one attribute
reduct set. The set R of all attribute reduct sets R is defined as R = {X : X ⊆
C, γC(D) = γX(D)}. The RSAR will not compromise with a set of input attributes
that has a large part of the information embedded in the initial input attribute set,
C—it always attempts to reduce the attribute set while losing no information that
is significant to the classification at hand. RSAR searches for the attribute reduct
sets of least cardinality. That is, it seeks one or more elements in the set of minimal
reducts Rmin ⊆ R, where Rmin = {X : X ∈ R, ∀ Y ∈ R, ‖X‖ ≤ ‖Y ‖}.

In terms of computational complexity and memory requirements, the calculation
of all possible subsets of a given set is an NP-hard task. To solve this problem,
the reduct subset search space is treated as a tree traversal. Each node of the tree
represents the addition of one input attribute to an initially empty reduct. Instead
of generating the whole tree and picking the best path on it, the path is chosen
progressively. Starting with the empty set, attributes are chosen and progressively
added to the candidate reduct until a γP (Q) of 1 is reached, when all attributes have
been added, or when the addition of an attribute does not change the value of γ.
Attributes are added using the following heuristic: the next attribute chosen to be
added to the candidate reduct is the attribute that adds the most to the reduct’s
dependency. Adding all attributes may not necessarily result in a γ of 1, in which
case the dataset could not be correctly classified to begin with. This is dubbed the
QuickReduct, also described in (Shen and Chouchoulas, 2000). QuickReduct is
similar to the algorithm introduced in (Jelonek et al., 1995), where it was proposed
in conjunction with neural network-based classifiers.

It is now possible to show the workings of QuickReduct in the context of an
example. The reduct R starts off as the empty set. For each of the attributes, γ
is calculated with respect to the output attribute e: γ{a}(e) = 0/8, γ{b}(e) = 1/8,
γ{c}(e) = 0/8, and γ{d}(e) = 2/8. This shows that attributes a and c are not of
much use on their own. Attribute d contributes the most information, allowing the
classification of two of the eight examples. QuickReduct hence adds d to the reduct
and attempts to evaluate the addition of a second attribute from those remaining
(a, b, c): γ{d,a}(e) = 3/8, γ{d,b}(e) = 8/8, and γ{d,c}(e) = 8/8. The addition of either
attribute b or c to the reduct (currently {d}) allows perfect classification of the data.
The first such attribute, b, is added to the reduct.

RSAR offers a number of advantages. It preprocesses datasets without altering
the attribute values themselves, thus maintaining the semantics. It is not a lossy al-
gorithm; it will remove an input attribute from the dataset only if this action removes
absolutely no information (with respect to the classification at hand). Unlike statisti-
cal correlation-reducing approaches like the Principal Components Analysis (PCA),
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discussed among other places in (Haykin, 1994), the dimensionality reduction does
not require a human input, or the setting of variance thresholds. The same feature is
also a disadvantage, since other techniques offer a more aggressive dimensionality re-
duction, accepting that in some cases the loss of a little information may in fact prove
to be advantageous (e.g. in noisy environments). However, it is possible to obtain a
‘compromise’ reduct by setting a threshold t for the degree of dependency. Then,
QuickReduct terminates when γ reaches t, instead of 1, producing a reduct with
a certain loss of information, as specified by t. Another disadvantage of the RSAR
algorithm is its lacking efficiency. This is successfully rectified by the QuickReduct
algorithm, which converts an exhaustive evaluation of all attribute combinations in-
to a best-first tree search. In terms of the input domain, RSAR is mainly intended
for discrete domains, although it can be adapted to cope with continuous ones, as
described in (Shen and Chouchoulas, 2000).

2.2. Supervised Learning

Supervised learning involves learning from input-output pairs using inductive method-
ologies. A pre-labelled dataset is required to train such a learning algorithm. The
dataset provides the learning system with a class of functions and a number of sam-
ple points for each function. Training involves approximating the functions in ques-
tion. Members of this wide family of systems learn to classify data into a number of
pre-defined classes or clusters.

Supervised learning is of particular use when systems under training are intended
to perform tasks that have previously been performed by humans with a certain
degree of success. In such cases a relation between data is known to exist, but the
rules governing it are not known, or are difficult to obtain. The system to be trained
effectively learns by example, generalising the knowledge to apply it to the entire
domain.

Most connectionist approaches are supervised learning systems (Ripley, 1996).
Typical approaches to rule induction also depend on supervised learning. The follow-
ing is a description of the rule induction algorithm used to demonstrate the application
of RSAR to this type of learning.

Lozowski’s Rule Induction Algorithm. The rule induction algorithm presented in
(Lozowski et al., 1996) extracts fuzzy rules from real-valued examples. Although this
data-driven RIA was proposed to be used in conjunction with neural network-based
classifiers, it is independent of the type of the classifier used (Shen and Chouchoulas,
1999). Provided with training data, the RIA induces approximate relationships be-
tween the characteristics of the conditional attributes and those of the decision at-
tributes. The conditional attributes of the induced rules are represented by fuzzy
variables, facilitating the modelling of the inherent uncertainty of the application
domain.

The algorithm generates a hyperplane of candidate fuzzy rules (p1∧p2∧· · ·∧pn ⇒
c) by fuzzifying the entire dataset using all the combinations of rule conditions. Thus,
a domain with n conditional attributes, each of which is a fuzzy region fuzzified by fx
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fuzzy sets (1 ≤ x ≤ n), the hyperplane is fuzzified into
∏n

i=1 fi n-dimensional clusters,
each representing one vector of rule conditions. Each cluster p = 〈µ1, µ2, . . . , µn〉
may lead to a fuzzy rule, provided that training examples support it. To obtain
a measure of what classification applies to a cluster, fuzzy min-max composition is
used. The conditional attribute values of each training example are fuzzified according
to the fuzzy conditions 〈µ1, µ2, . . . , µn〉 that make up cluster p. For each example
x = 〈x1, x2, . . . , xn〉, Spc x = min(µ1(x1), µ2(x2), . . . , µn(xn)) is calculated. This is the
s-norm of example x with respect to cluster p and classification c. To give a measure
of the applicability of a classification to cluster p, the maximum of all s-norms with
respect to p and c is calculated (this is dubbed a t-norm): T pc = max{S

p

c x ∀ x ∈
Dc}, where Dc is the set of all dataset examples that can be classified as c. This is
iterated over all possible classifications c to provide a full indication of how well each
cluster applies to each classification.

A cluster generates at most one rule. The rule’s conditions are the cluster’s n co-
ordinate fuzzy sets. The conclusion is the classification attached to the cluster. Since
there may be t-norms for more than one classification, it is necessary to decide on one
classification for each of the clusters. Such contradictions are resolved by using the
uncertainty margin, ε (0 ≤ ε < 1). This means that a t-norm assigns its classification
on its cluster if and only if it is greater by at least ε than all the other t-norms
for that cluster. If this is not the case, the cluster is considered undecidable and no
rule is generated. The uncertainty margin introduces a trade-off to the rule generation
process. In general, the higher ε is, the fewer rules are generated, but the classification
error may increase.

Lozowski’s RIA is NP-hard, and may become intractable when inducing rules for
datasets with many conditional attributes (Chouchoulas and Shen, 1998). The most
important problem, in terms of both memory and runtime, is dealing with the large
numbers of combinations of fuzzy values. This is not so important when only a few
attributes are involved. Applied to a more complex problem, such as algae population
estimation (see Section 3), without some means of attribute reduction, the algorithm’s
intractable nature becomes evident, both in terms of time and space.

It is thus convenient and helpful to treat the creation of fuzzy-set vectors as the
creation of a tree. In this context, a leaf node is one combination of membership func-
tions, and each arc represents one evaluation of a membership function. The minimum
membership is retained when creating the t-norms. Any membership function that
evaluates to zero means that all leaf nodes in the subtree will eventually evaluate to
zero, too, because of the use of the min(·) function. A subtree is therefore useless and
can be pruned if (and only if) its root node evaluates to zero.

In an application domain where a reasonable degree of resolution is required, it
is not unusual to see quantities partitioned into five or seven fuzzy sets. Assuming an
average of six fuzzy sets per attribute and 40 attributes, the data may be seen as a
40-dimensional ( � 40 ) hyperplane, each dimension of which is a fuzzy region covered
by six fuzzy sets. The RIA would attempt to produce rules to cover the entire space
by using each fuzzy set of each dimension. Thus, it would need to generate at most
640 possible rules.



590 Q. Shen and A. Chouchoulas

In most applications of fuzzy logic, any given value x in a fuzzy region will belong
to at most two fuzzy sets, A and B, with membership µA(x) ≥ µB(x) > 0. Thus,
for any other fuzzy set Fi, it may be assumed that µFi(x) = 0.

The RIA pruning algorithm will detect this at an early stage and will not consider
fuzzy sets Fi as containing candidate rules. Therefore, for each of the 40 fuzzy regions
(dimensions of the hyperplane), two of the six fuzzy sets will be allowed to generate
candidate rules. This reduces the number of combinations to at worst 240. If some
values in a fuzzy region only belong to one fuzzy set with non-zero membership, this
number becomes smaller.

Even given the worst case scenario, however, the time needed by the enhanced
algorithm for this example is approximately nineteen orders of magnitude less than
that needed for the full tree traversal. The savings are significant, but the number of
combinations is still far too large.

2.3. Unsupervised Learning

Unsupervised learning systems discover patterns within the data. There are no pre-
defined classes, hence the learning system is self-organising. Since such systems need
no pre-labelled data, they can be applied to domains where labelling is difficult for
humans to perform, or simply unknown. Unsupervised learning systems can perform
clustering to discover new relations between data, based on an internal quality mea-
sure.

Thus, such systems are of particular use where the relations governing a domain
are yet to be discovered. Alternatively, unsupervised learning can be used where a
domain contains samples of different, unknown classes. Here, the learning system dis-
covers relations within the data without the benefit of pre-defined classes or clusters.
New domains, those that have heretofore not been tackled by humans, or those where
human expertise is in question (or needs to be improved by the use of the system),
are especially suitable for unsupervised learning.

Clustering approaches are typical examples of unsupervised learning. The follow-
ing section describes the unsupervised algorithm used to demonstrate the application
of RSAR to this type of learning systems.

Multivariate Adaptive Regression Splines. Friedman’s MARS (Friedman, 1991)
is a statistical methodology that can be trained in an unsupervised manner to ap-
proximate multidimensional functions. It uses recursive partitioning and spline curves
to closely approximate the underlying problem domain. The partitioning and number
of basis functions used are automatically determined by this approach based on the
provided training data.

A spline is a parametric curve defined in terms of control points, also referred
to as knots, and a basis function or matrix (Foley et al., 1990). The curve approx-
imates the line joining the knots, as shown in Fig. 1. Each knot has an associated
weight. The spline is a continuous curve that approaches its control points. Although
splines generally do not interpolate their control points, they can approximate them
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quite closely. Increasing a control point’s weight makes the spline come closer to the
point. The basis function or matrix provides the spline with its characteristics. Two-
and three-dimensional splines are widely used in computer graphics and typography
(Bartels et al., 1987).

Fig. 1. A spline curve and its control points.

MARS adapts the general, n-dimensional form of splines for function approx-
imation. It generates a multi-dimensional spline to approximate the shape of the
underlying problem hyper-plane. Each attribute is recursively split into regions and
subregions. The split into subregions is performed if a spline cannot approximate a
region within reasonable bounds. A hierarchy of spline basis functions is thus built.
This allows MARS for great flexibility and autonomy in approximating numerous
deceptive functions.

MARS models may be expressed in the following form, known as ANOVA de-
composition (Friedman, 1991):

f̂(x) = a0 +
∑

Km=1

fi(xi) +
∑

Km=2

fij(xi, xj) +
∑

Km=3

fijk(xi, xj , xk) + · · · ,

where x is an input vector whose ordinates represent a training or testing datum, a0
is the coefficient of the constant basis function B1 (Friedman, 1991), fi is a univariate
basis function of xi, fij is a bivariate basis function of xi and xj , and so on. In
this context, Km is the number of variables a basis function involves. The ANOVA
decomposition shows how a MARS model is the sum of basis functions, each of which
expressing a relation between a subset of the variables of the entire model. As an
example, a univariate basis function fi is defined as fi(xi) =

∑

Km=1
amBm(xi),

where am is the coefficient of basis function Bm which only involves variable xi.
In turn, Bm is defined as Bm(x) = I [x ∈ Rm], where I is a Boolean function
that evaluates to 1 if x is a point within a predefined region Rm, and evaluates
to 0 otherwise. Regions Ri may overlap, so there can be no zero pairwise product
expectation. MARS uses a generalised, multivariate spline basis function Bqm(x) =
∏Km
k=1[skm(xkm − tkm)]

q , where Bm is the basis function in question, involving Km
ordinates xkm of point x (1 ≤ k ≤ Km); q is the order of the multivariate spline,
with q ≥ 1; skm = ±1; and tkm is ordinate m of the spline knot tm.

Recursive partitioning is employed in MARS in order to perform two tasks: to
adjust the basis functions’ coefficients ({am}M1 , 1 ≤ m ≤ M , for each basis function
Bm, where M is the number of basis functions generated by the algorithm as a result
of recursive partitioning), and to partition the universe of discourse into a set of these
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disjoint regions {Rm}M1 . A region R is split into two subregions if and only if a
basis function cannot be adjusted to fit the data in R within a predefined margin.
Recursive partitioning is discussed in detail in (Friedman, 1991).

Unlike many other function approximators, this system produces continuous, dif-
ferentiable approximations of multidimensional functions, thanks to the use of splines.
Applied to most domains, MARS is particularly efficient and produces good results.
The continuity of the resultant approximative models is one of the most desirable
results if statistical analysis is to be performed. However, MARS suffers from the
curse-of-dimensionality problem, especially when dealing with complex domains. Each
dimension of the hyperplane requires one dimension in the approximation model, and
an increase in the time and space required to compute and store the splines. The
time required to perform predictions increases exponentially with the number of di-
mensions. Further, MARS is very sensitive to outliers. Noise may mar the model by
causing MARS to generate a much more complex model as it tries to incorporate the
noisy data into its approximation. A technique that simplified the produced models
and did away with some of the noise would thus be very desirable. This forms the very
reason that the Rough Set-Based Attribute Reduction technique is adopted herein to
build an integrated approach to multivariate regression with reduced dimensionality.

3. Problem Domain

Awareness of environmental issues has increased greatly in recent years. Waste pro-
duction from a vast number of manufacturing processes is one of the most important
issues, as it influences algae1 growth patterns in rivers. Growing algae communities
are detrimental to water clarity, while complex water life like fish can also be endan-
gered, due to changes in the oxygen content of the water. Human activities can also be
affected, since toxic effects may be present in relation to algae growth. Measuring and
reducing the impact that farming, manufacturing and waste disposal have on nutrient
content in rivers have, thus, attracted much attention. Biologists are attempting to lo-
cate the chemical parameters that control the growth of algae communities (ERUDIT,
1999).

To help in this task, an intelligent tool would be desirable. The system should
locate the parameters that control algae population fluctuations and use this infor-
mation to estimate these changes. Such a system could aid in a number of areas,
including simulating hypothetical scenarios and predicting trends in algae communi-
ties, in addition to its intended estimation task.

To build the knowledge base for this application, samples from different Euro-
pean rivers were taken over the period of one year. These samples were analysed to
quantify the presence of several chemicals, including nitrates, nitrites and ammonia,
phosphate, oxygen and chloride. The pH of the water was also measured. In addition,
the algae population distributions for each of the species involved were determined

1 The alga is a single-celled plant that has, over a period of three and a half billion years, evolved

into the most successful coloniser of almost any known ecology on the planet.
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in the samples. A number of additional factors were taken into account, such as the
season, river size and flow rate.

It is relatively easy to locate relations between one or two of these quantities and
a species of algae. However, the process involves expertise in chemistry and biology
and requires well-trained personnel and microscopic examination that cannot be au-
tomated given the state of the art. Thus, the process becomes expensive and slow,
even for a subset of the quantities involved here. There are complex relations at work
between the attributes of this application domain: algae may influence one another,
as well as be influenced by the concentration of chemicals. As such, there is expected
to be some redundancy in the data, allowing for a good case study of RSAR.

The dataset (ERUDIT, 1999) available for training includes 200 instances. Each
instance contains the following information: the time of year the sample was tak-
en, given as a season; river size; water flow rate; eight chemical concentrations; and
population counts for seven algae species. The first three attributes of each instance
(season, river size and flow rate) are represented as fuzzy linguistic variables. Chemical
concentrations and algae population estimates are represented as continuous quanti-
ties. The dataset includes a few samples with missing values. Of the 200 instances,
two exhibiting mostly unknown values were removed from the data because of their
low quality.

In order for the RIA to generalise given training samples, attributes of numerical
values are fuzzified. As the first three attributes are already represented in fuzzy
terms, no such preprocessing is required for them. In the case of MARS, the first three
attributes were defuzzified into discrete integers. Since MARS deals with numerical
values, no preprocessing was needed for the remaining attributes.

Matters differ for the eight chemical concentrations. As with all concentrations,
these exhibit an exponential distribution. The nature of the samples is such that there
are not enough representative values in a homogeneous distribution in the attributes’
domains. Thus, samples are described using a logarithmic scale defined by f(x) =
log(x+ 1), where x is the numerical measurement of an attribute2.

As can be expected, the distributions of the algae are also exponential. This, cou-
pled with the fact that the decision attributes representing algae population counts
are numerical, suggests the use of a similar treatment as above. The conditional at-
tributes were thus transformed by g(x) = blog(x + 1)c, where x is the numerical
measurement of the algae community’s population. This quantisation is required be-
cause RSAR works better with discrete classes. The quantised data are only used for
dimensionality reduction. During training, the original data are employed. The data
were still expressed on a logarithmic scale using g0(x) = log(x+ 1), but without the
quantisation introduced by the use of the floor function (b·c).

This is reasonable because of the way the algae population ‘counts’ are obtained.
It is assumed that the river’s water is perfectly homogeneous and that any sample
of the water, no matter how small, is statistically representative. Water samples are
thus obtained. A few drops of each sample are examined visually via microscope

2 Concentrations are non-negative real numbers, hence it is necessary to add an arbitrary constant

to avoid the logarithm of zero.
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and the number of algae are counted. This allows for human errors to determine the
population, as well as the fact that a number of drops of water from a sample of a
river are not necessarily statistically representative of the entire river. Quantisation
alleviates this problem. In addition, if the aim is to estimate the behaviour of algae
communities, it is far more intuitive to provide linguistic descriptions like ‘normal’,
‘lower’ and ‘higher’ rather than estimated concentrations that have to be matched
against tables and may again be subject to human error.

4. Utility of RSAR in Learning

4.1. System Integration

In essence, the approach proposed herein deals with large datasets by applying RSAR
to the dataset to discover a set of attributes that convey all the information with
as little redundancy as possible. The desired attributes are then extracted from the
dataset and fed to either the RIA to induce a suitable ruleset, or to MARS to regress
a multivariate spline model of the domain.

As shown in Fig. 2, the system integrates the following modules:

Precategorisation reads a dataset and outputs a version in which continuous values
have been replaced by discrete labels. A standard fuzzifier (Chouchoulas and
Shen, 1998) may be employed for this task.

Attribute Reduction implements the RSAR algorithm, as described in Section 2.1.

Attribute Selection is a trivial sub-program that, given a set of attributes (by the at-
tribute reduction module) and a dataset, extracts and outputs only the specified
attributes and their real values from the dataset.

Knowledge Induction incorporates either the MARS (described in Section 2.3) or
RIA (see Section 2.2) techniques, depending on the supervised or unsupervised
nature of the task at hand. MARS generates a spline model of the domain,
whereas the RIA produces a fuzzy ruleset.

The effectiveness and efficiency of the integrated approach are demonstrated in
the following two sections, which provide results for the supervised (FuREAP) and
unsupervised (RSAR+MARS) applications, respectively.

For convenience, each of the seven alga species was processed separately by the
learning systems in order to provide seven different rulesets or models. Each ruleset or
model reflects the behaviour of one species. The separate RIA rulesets can be merged
trivially, to form a single ruleset. Alternatively, the RIA can be applied to all seven
to produce directly a single, unified ruleset. This latter choice is, of course, a more
inelegant and inflexible solution than having separate algae models. Therefore, the
following results are shown with respect to individual algae species. Please note that
MARS only approximates functions with a single output, so splitting the domain into
seven sub-problems, one for each alga species, is the only way to use this dataset with
MARS.
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Input Output

Dataset Attribute Reduction

Attribute Selection

Precategorisation

Rule Induction Ruleset

MARS Model

Fig. 2. Block diagram of the integrated system.

4.2. Supervised Learning (FuREAP)

It is, first of all, interesting to investigate what effects dimensionality reduction may
have on the runtime performance of the Fuzzy-Rough Estimator of Algae Populations
(FuREAP). To show whether it has an impact on the overall accuracy, Lozowski’s RIA
algorithm was used to induce a ruleset from the entire, unreduced algae dataset. The
results are shown in the top row of Fig. 3. Then, FuREAP was instructed to reduce the
dimensionality of the dataset and produce another ruleset from these reduced data.
This resulted in a seven-attribute dataset selected from the original, eleven-attribute
one. The results of testing this ruleset are illustrated in the bottom row of Fig. 3.

Experimental results are given as two types of graphs: estimation error and ruleset
size. Both quantities are plotted against ε, the uncertainty margin or tolerance which
creates a trade-off between the estimation accuracy of the ruleset and the number
of learned rules it comprises. Please note that the estimation error, rather than the
estimation accuracy, is shown here. This is done to emphasise the accuracy/size trade-
off. The ruleset size grows exponentially, so the graphs involving it are shown on a
logarithmic scale. All seven algae species are shown separately on each graph as a
family of curves. Also, please note that, in plotting the graphs, ‘undecidable’ answers
by the RIA were considered wrong answers, thus giving slightly more conservative
results.

There is a certain drop in accuracy (around 10%) after dimensionality reduction,
which may indicate that the attribute reduction process has removed some of the
necessary information. However, a full investigation of the domain reveals that inex-
pert fuzzification is largely responsible for the error during the rule-induction phase.
The fuzzification of certain conditional attributes is less successful than others. This
causes the removal of some of the better-fuzzified attributes during dimensionality
reduction, leading to the observed drop in accuracy.
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Fig. 3. Algae estimation accuracy before (top) and after (bottom) dimensionality reduction.
The left graphs show estimation error against the value of ε; the right graphs show
the ruleset size (on a logarithmic scale) against ε.

Despite this accuracy reduction, however, the ruleset induced from the low-
dimensionality data is around two orders of magnitude smaller than that generated
from the unreduced dataset. Induction speed increases at a higher rate, making a
strong argument for the use of FuREAP in applications where time and storage are
at a premium. As stated previously, however, the speed and storage benefits are not
limited to the training stage. They extend to the runtime use of the system. By re-
ducing the dimensionality of the dataset, the arity of the rules is also decreased. This
allows for fewer measured variables, which is important for dynamic systems where
observables are often restricted, or where the cost of obtaining more measurements
is high. In the river algae domain, for instance, providing different measurements has
different costs attached. It is trivial to give the time of year and size of river, but
the flow rate may need extra equipment. Additionally, each of the measurements of
concentration of chemicals may need its own process, requiring time, well-trained per-
sonnel and money. Reducing the number of measurements to be made significantly
enhances the potential of the estimator system.

To show that the dimensionality reduction part of FuREAP performs as claimed,
it is desirable to prove two further points: that the RSAR algorithm in FuREAP truly
finds the smallest, best subset of conditional attributes of the dataset (known as a
reduct), and that adding further attributes to this reduct does not produce better
results.
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To this end, two further experiments were conducted. In the first one, numerous
datasets of six attributes each were randomly generated from the original, eleven-
attribute algae dataset. Rulesets were induced from these, and the average estimation
error of all runs was plotted, as shown on the right graph of Fig. 4 (where the left
graph is the reduced dataset error, copied here to ease comparison). Two empirical
conclusions can be drawn from these results: first, not all attributes contribute the
same information; second, the results obtained from random sets of attributes are
worse than those obtained from the reduct set. The latter conclusion demonstrates
that RSAR does indeed locate the minimal high-quality attribute set.
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Fig. 4. Comparison of the estimation error after training on the reduct set of seven attributes
(left), and random sets of six attributes (right).

In the second further experiment, the four remaining conditional attributes were
added to the seven-attribute reduct one at a time. The aim was to show that more
attributes do not necessarily imply higher accuracy. Rulesets were induced from these
artificially produced attribute sets, and the results were averaged. As shown on the
right graph of Fig. 5 (again, the canonical, reduced results are shown on the left graph
for comparison), error increased by adding an arbitrary attribute to the reduct. This
leads to the conclusion that the reduct indeed leads to the minimal accuracy loss.

It is clear that FuREAP performs very well. This shows that real-world problems
do contain a lot of redundancy which, once removed, allows highly accurate rulesets
of low-arity rules to be induced. To reinforce the significance of the present approach,
the performance of FuREAP is compared with that of a system employing rules
generated using C4.5, the standard machine learning tool (Quinlan, 1993), from the
sample dataset. FuREAP is able to provide an estimation accuracy that surpasses
that of C4.5, all the while using a smaller set of conditional attributes (as shown
in Table 2). Although C4.5 offers superior training speed, the number of attributes
involved in the final system is very important, inasmuch as the cost, complexity and
time requirements of obtaining each set of measurements is proportional to the number
of measurements in each set.
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Fig. 5. Comparison of the estimation error after training on the reduct set of attributes
(left), and the reduct set plus one random attribute (right).

Table 2. Comparison between FuREAP and C4.5 with respect to accuracies and the number
of conditional attributes involved.

Algae FuREAP C4.5

Species Error Attributes Error Attributes

Species A 15% 7 18% 11

Species B 12% 7 19% 10

Species C 16% 7 24% 9

Species D 8% 7 13% 11

Species E 11% 7 14% 10

Species F 12% 7 15% 10

Species G 9% 7 16% 11

4.3. Unsupervised Learning (RSAR+MARS)

To test how unsupervised learning systems can benefit from the use of RSAR, two
series of experiments were performed: one produced MARS models based on the orig-
inal, unreduced algae data; the other employed RSAR to reduce the dimensionality of
the data and invoked MARS to produce models. The algae dataset was split randomly
(using a 50% split ratio) into training and test datasets, both ‘massaged’ as described
earlier using a 50% split ratio. 100 runs were performed for each experiment series.

For the second experiment, RSAR was run on the suitably preprocessed algae
dataset. The reduction algorithm selected seven of the eleven conditional attributes.
This alludes to the fact that the dataset was reasonably information-rich before re-
duction, but not without redundancies.

The results are shown in Table 3. Minimum and maximum RMS errors are shown
separately for each alga species. It is clear from these results that the implications
of employing RSAR as a preprocessor for MARS are minimal. The slight drops in



Rough set-based dimensionality reduction for supervised . . . 599

accuracy exhibited after the dimensionality reduction indicate that the process has
removed some of the necessary information. This information reduction was due to the
quantisation process employed for this domain, rather than the RSAR methodology
itself.

Table 3. Experimental results, showing RMS errors.

Before After

Alga Min Max Min Max

Species A 0.923 1.639 0.924 1.642

Species B 0.893 1.362 0.932 1.389

Species C 0.822 1.202 0.856 1.206

Species D 0.497 0.748 0.595 0.768

Species E 0.723 1.210 0.768 1.219

Species F 0.762 1.158 0.892 1.259

Species G 0.669 0.869 0.689 0.872

However, MARS models obtained from the low-dimensionality data are smaller
than their unreduced equivalents by at least a factor of 24. This is based on a con-
servative assumption that each of the four removed attributes is split into only two
subregions by MARS. Given the relative complexity of even small MARS models,
this reduction in the model size is particularly welcome. The processing time required
by MARS decreases similarly, although the algorithm’s efficiency is such that time
requirements are not as important as space requirements.

As with FuREAP, reducing the dimensionality has welcome side effects extending
to the runtime of the system: training time, runtime, response time and costs are
reduced, while the speed and applicability of the system are increased.

5. Conclusion

Learning systems have found their way to all manners of application domains. This
success is due to the fact that learning systems are cost-effective. The price of com-
puting equipment has dropped dramatically over the past decade, while the time of
human experts has remained steadily expensive. Having even a fraction of the knowl-
edge of a highly paid and competent consultant built into an application system is
clearly very desirable. This requires training or learning.

Regardless of whether supervised or unsupervised learning is used, however,
many systems suffer from the same problem: intractability. Many systems exhibit
non-polynomial complexity with respect to dimensionality, which imposes a ceiling
on the applicability of such approaches, especially to real world applications, limiting
the applicability of learning systems to small, well-analysed domains.

Rough set theory (Pawlak, 1991) is a formal methodology that can be employed
to reduce the dimensionality of datasets as a preprocessing step to training a learning



600 Q. Shen and A. Chouchoulas

system on the data. Rough Set Attribute Reduction (RSAR) works by selecting the
most information rich attributes in a dataset, without transforming the data, all the
while attempting to lose no information needed for the classification task at hand
(Chouchoulas and Shen, 1998; Shen and Chouchoulas, 2000). The advantages of di-
mensionality reduction extend to the runtime of the system: systems become simpler,
more compact and robust; response times drop; and costs related to obtaining data
are reduced.

This paper has investigated the application of RSAR to both supervised and un-
supervised learning, producing a flexible framework for dimensionality reduction. Two
separate systems were built, using supervised and unsupervised learning, respectively.
Lozowski’s fuzzy Rule Induction Algorithm (RIA) (Lozowski et al., 1996) was tak-
en to represent supervised learning systems, while Friedman’s Multivariate Adaptive
Regression Splines (MARS) (Friedman, 1991) represented unsupervised learning. To
gauge the success of the two integrated systems, they were applied to estimating river
algae populations as influenced by changes in the concentration of chemicals in the
water. The success of the application was evident by the reduction in the number of
measurements required, as well as by the accuracy that matches closely that produced
by training on the original, unreduced dataset.
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