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A NOTE ON SOME CHARACTERIZATION OF INVARIANT ZEROS IN SINGULAR
SYSTEMS AND ALGEBRAIC CRITERIA OF NONDEGENERACY
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The question how the classical definition of the Smith zeros of an LTI continuous-time singular control system
S(E, A, B,C,D) can be generalized and related to state-space methods is discussed. The zeros are defined as those
complex numbers for which there exists a zero direction with a nonzero state-zero direction. Such a definition allows an
infinite number of zeros (then the system is called degenerate). A sufficient and necessary condition for nondegeneracy is
formulated. Moreover, some characterization of invariant zeros, based on the Weierstrass-Kronecker canonical form of the
system and the first nonzero Markov parameter, is obtained.
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1. Introduction system matrixP(s) are called the transmission zeros of
S(E,A,B,C,D) (Misraet al, 1994).
During the past two decades considerable attention has In (Tokarzewski, 1998) it was shown that if the sys-
begn paid to the detgrmination and computation of multi- ., ., S(E, A, B, C, D)’ with the regular pencikE — A is
variable zeros of a singular system descnbed.by Fhe State'nondegenerate, then the set of its invariant zeros coincides
space modeLS(E7 A,B,C, D). The Cha_ract(.anzatlon.of with the set of invariant zeros of the appropriate standard
the zeros of singular systgms proposed in this paper is PaNinear system. In this way, the question of seeking invari-
allel to that for standard linear systems. ant zeros of a nondegenerate singular system can be re-
The distinct Smith zeros of the system duced to such a question for standard systems (suitable
S(E,A,B,C,D) are those points of the complex procedures for finding invariant zeros in standard linear
plane where the system matrix systems can be found in (Tokarzewski, 2002a)). Unfor-
tunately, no algebraic critera of degeneracy or nondegen-
eracy for singular systems are accessible at present. This
paper constitutes an extended version of the conference
paper (Tokarzewski, 2003).

sE—-A -B

Pe=1"¢ " p

loses its normal rank. Recall (Callier and Desoer, 1982,
pp. 25-26) that the normal rank of a polynomial matrix .
M (s) is the rank over the ring of all polynomials in one 2. Preliminary Results
complex variables with coefficients in the field of real 5 ¢
numbers. The Smith zeros &f(E, A, B,C, D) are de-

fined as the roots of the so-called zero polynomial which Consider a systen$(FE, A, B, C, D) of the form
is the product of diagonal (invariant) polynomials of the

Smith canonical form ofP(s) (i.e., as the Smith zeros Ei(t) = Az(t) + Bu(t),

of the penciIP(é)) (Misra et al,, 1994). The Smith ze- y(t) = Ca(t) + Dult),

ros of the pencil[sE — A, —B] are called the input

decoupling (i.d.) zeros, whereas the Smith zeros of thet > 0, z(¢t) € R", u(t) € R™, y(t) € R", where
pencil [*£54] are called the output decoupling (0.d.) E,A,B,C,D (D # 0 or D = 0) are real matrices of
zeros of S(E, A, B,C, D) (Misra et al, 1994). If the appropriate dimensions and the matiix is singular but
systemS(FE, A, B,C, D) has no input and no output de- det(sE — A) # 0 (i.e., the pencilsE — A is regular). We
coupling zeros, then the Smith zeros of the underlying adopt the following definition of the invariant zeros of (1).

Invariant Zeros

)
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Definition 1. (Tokarzewski, 1998; 2002a; 2002b; 2003):
A number A € C is aninvariant zeroof (1) if and only

if there exist vectors) # 2° € C" (state-zero direction)
and g € C™ (input-zero direction) such that the triple

A, 20, g satisfies
_ |0
= .

The system is calledegeneraté it has an infinite number
of invariant zeros.
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The set of all invariant zeros of (1) will be denoted by

ZI:{/\EC: Jo#£a2"eCn, IgeC™,

=)

and the set of all Smith zeros by

20

9
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Z° = {/\ € C: rank P(\) < normal rank P(s)}. 4)

Remark 1. In the system (1) the set! has the same
invariance properties ag&”, i.e., it is invariant under the
following sets of transformations:

(i)

space,
(ii) nonsingular transformations of the inputs or outputs,
and

(iii)
This claim follows immediately from Definition 1. The

proof is analogous to the proof of (Tokarzewski, 2002a,
Lemma 2.3, p. 18) and for this reason it is omitted here.

constant state or output feedback to the inputs.

2.2. Relationship between Invariant Zeros and Smith
Zeros

The setsZ® and Z! are interrelated as follows.

Proposition 1. (Tokarzewski, 2002b)

(i) If A € C isa Smith zero of (1), theh is an invariant
zero of (1), i.e.,Zz° C Z!.

(i) The system (1) is nondegenerate if and onlgf =
VAR

(iiiy The system (1) is degenerate if and onl§if = C.

nonsingular coordinate transformations in the state- m

Proof. A full proof of this result can be found in
(Tokarzewski, 2002b). =

Thus, each Smith zero is also an invariant zero.
Moreover, Z may be equal toZ° (then Z/ may be
empty or finite) orZ’ may be equal to the whole com-
plex plane. In this way, the set of the invariant zeros may
be empty, finite or equal t&C, and when the system is
nondegenerate, the sets of the Smith zeros and of the in-
variant zeros coincide. Of course, Proposition 1 tells us
also that if in the system (1) there exists at least one in-
variant zero which is not a Smith zero, then the system is
degenerate.

Corollary 1. If the system matrixP(s) corresponding to
the system (1) (withD # 0 or D = 0) has full column
normal rank, then the system is nondegenerate,Z.&.=
Z'.

Proof. In view of Proposition 1 it is enough to show that
any invariant zero is also a Smith zero. However, from
Definition 1 it follows that if A € Z!, then the columns of
P(\) are linearly dependent oveE. Thus, we can write
the relation

rank P(A) < normal rank P(s) = n + m,

which means that\ € 75, n

Remark 2. Note that Corollary 1 tells us also that if the
system (1) is degenerate, th@prmal rank P(s) < n +

Corollary 2. In a squarem-input m-output system (1)
let the matrix [ ¥’ | have full column rank.

Then

(&) A € C is an invariant zero of the system if and only
if det P(\) =0,

(b) the system is degenerate if and onlylift P(s) = 0
(or equivalently,det G(s) = 0).

Proof. (a) Let det P(\) = 0. Then there exists a nonzero
vector {Tﬂ satisfying (2). Suppose that in this vector
we havez? = 0. Then from (2) we get| %] g = [J],
i.e., g = 0. This contradicts the assumption th%\’f;}

is nonzero. Thusg® # 0 and, consequently) is an in-
variant zero. Conversely, i is an invariant zero, i.e., a
triple composed of\, z° # 0 and g satisfies (2), then

the columns of P(\) are linearly dependent and conse-
quently, det P(A) = 0.

(b) Suppose thadlet P(s) = 0. Thendet P(A\) =0
atany A € C and, consequently, in view of (a), the system
is degenerate. In order to prove the converse, suppose that
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the system is degenerate addt P(s) is not identically When the matrixsEZ — A is taken in its Weierstrass
zero. This means, however, thdtt P(s) is a nonzero  canonical form (8), we get

polynomial in s, and in view of (a) the system cannot

be degenerate (its invariant zeros are exactly the roots of (sE— A)" = [(811 — At 0 ]

det P(s)). The remaining part of (b) follows from the re- 0 (sN — )71

lation det P(s) = det(sE — A) det G(s). [ |

0 0
0 (sN—1I,)!

2.3. Fundamental Matrices, Markov Parameters and I A
the Weierstrass Canonical Form + (shi — A1) O] (10)
0 0
It is well known (Kaczorek, 1998; 2000) that for a regu- and
lar pencil sE2 — A with the index of nilpotencyy there A 0 I, 0
exist matrices®;, i = —¢,—(¢ —1),...,—-1,0,1,2,..., A= 0 I’ “lo N[
(called fundamental matrices) such that
oo o — 0 0
(SE _ A)_l — Z (I)is—(i—i-l) (5) —q = 0 Nq71 S ey
i=—q
0 0 0 0
and D= - [0 Nkl] g ®=— [O IQ]’ 11)
I for =0
Eb, — Ad;, 1=d,F — P, 1A= " (6
! ! {O foriyé().() By = I 0, o, = A 0,
0 0 0 0
The transfer function matrix for the system (1) can By — AT 0 &, — Ak 0
then be written in the form 0o of T 0 of
_ )= _—ga-INe-l L _gN T
G(s) = D+ C(sE — A)'B (recall that(sN — I5) T ‘ s 2
(s) (sB=4) and (sI, — A))~! = 220 s~ (D A1),
=D+ Z C®;Bs™ ), (7) Remark 3. Itis easy to check that the matricés in (11)
i=—q satisfy (6).

Remark 4. The transformationP(sE — A)Q of a regu-
lar pencil s — A, where P and @ are arbitraryn x n
nonsingular matrices, does not change the Markov param-

If aregular pencilsE — A has an index of nilpotency  eters of the system (1) (in consequence, also the transfer
g and degdet(sE — A) = ny, then there exist nonsin-  function matrix G(s) of (1) remains unchanged).
gular matricesP and @ such that (cf. the Weierstrass- In fact, under such a transformation the system (1)
Kronecker theorem (Dai, 1989; Kaczorek, 1999; 2000)) becomes a new Systerrs(E/’ A/, B/’ C”7 D/), where

2 = Q7 'z and E' = PEQ, A’ = PAQ, B' =

sl — Ay 0 ] ) PB, ¢’ = CQ, D' = D. Moreover,®; = Q=1®,P~!

where the matrice® and C®,;B are called the Markov
parameters for (1).

0 N_T are fundamental matrices fo$(E’, A’, B’,C’, D’) and
T C'®/B' = C;B.
Furthermore, from the relation
Q 0
0 In

P(sE—A)Q = l

This is a Weierstrass canonical form«f — A. Using (8)

we can write sE— A —-B

C D
P(sE— A)Q —-PB
cQ D

P 0
0 I

SIl—Al)_l 0
0 (SN—IQ)_l . -

Qfl(SE_A)flpfl _ [(
(9)

(12)
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it is clear that the transformation considered changes nei-Consider the systen$(E, A, B’,C, D’) and its system
ther the zero polynomial, nor the set of the invariant zeros matrix

(i.e., atriple X, z° # 0, g satisfies (2) for the system (1) if
and only if the triple ), ' = Q—'2° # 0, ¢ satisfies (2)
for the systemS(E’, A’, B, C’, D")).

3. Sufficient and Necessary Condition
for Nondegeneracy

Proposition 2. The system (1) (witth =0 or D #0) is
degenerate if and only if

normal rankP(s) < n + rank [_;] . (13)

Proof. Let

—-B
rank [ ] =m' (m' <m).
D

(i) Suppose first thatn’ = m (i.e., [ 2] has full
column rank). Then necessity of the condition (13) fol-
lows from Remark 2.

Conversely, suppose that (13) holds. Then for any

A € C we have

rank P(\) < normal rankP(s) < n + m. (14)

From (14) and from the assumption

rank l_B] =m
D
it follows that at any given complex number the equa-

tion

(15)

with n+m unknowns has a solutio{ﬂ;} with 20 # 0.
This means that the system is degenerate.

(il) Suppose now thatn’ < m and assume (without
loss of generality) that the first:’ columns of [ 77| are
linearly independent. The submatrix ¢f2 ] composed

of these columns is denoted t{y‘D?' } ,l.e.,

_B _B/ _B//
p| |p D
and
_ _ !
rank [ DB] = rank DBj =m.

_B/
D/

sE— A

P ="

The sets of the invariant zeros for the systems
S(E,A,B,C,D) (1) and S(E, A, B’,C,D") coincide,
ie.,

Zé(E,A,B,C,D) = Zé(E,A,B/,C,D/)' (16)
The proof of (16) follows from the definition of the invari-
ant zeros and from the relation

D/

where Im M denotes the subspace spanned by the
columns of M. We are to show thah € Zg; 4 5 ¢ p)
if and only if A € Zé(E7A7B,,C,D,). Suppose first that
A € Zgpapepy €. via Definition 1, there exist
20 # 0 and g € C™ such thatA\E2° — A2° = By
and Cz° + Dg = 0. Since

B
D/

-B
Im =Im ,

we can find ag’ € C™' such that

_B/
D/

-B
D

/

9= g-

Consequently, at the sameand z° we get the relations
AE20 — Az® = B'¢’ and Cz° + D'¢g’ = 0, i.e., X €
Zyp.ap cpy The proof of the converse implication
proceeds along the same lines.

For P(s) and P’(s) the following relations hold:
normal rankP(s) = normal rankP’(s),
and

rankP()\) = rankP’(\) forany\ € C.
Now, from the first part of the proof which con-
siders the system S(E,A,B’,C,D’) it follows
that S(E, A, B’,C,D’) is degenerate if and only if
normal rankP’(s) < n + m/'.

Finally, the following sequence of equivalent con-
ditions holds: The systemS(E, A, B,C,D) in (1)
is degenerate= S(E,A,B’,C,D’) is degenerate=
normal rank P(s) = normal rank P'(s) < n+m/'.

[

Corollary 3. If in the system (1) (withD = 0 or D # 0)
we haver < rank [ 7], then the system is degenerate.
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Proof. The claim follows from Proposition 2 and from the
following relations:

-B
normal rank P(s) < min {n + rank [ ol + r}

<n+ak_B
ran .
D

||

The desired criterion of the nondegeneracy of the
system (1) takes the following form:

Proposition 3. The systent (E, A, B, C, D) in (1) (with
D =0 or D # 0) is nondegenerate if and only if

—-B
normal rank P(s) = n 4 rank [ D ] .

Proof. The claim follows from Proposition 2 and from the
fact that the normal rank oP(s) cannot be greater than
n—i—rank[‘DB]. |

4. Characterization of Invariant Zeros via
the First Nonzero Markov Parameter

In this section we consider the system (1) in its Weierstrass

canonical form (moreover, we assunie= 0) (a suitable
procedure for finding a Weierstrass canonical form of (1)
can be found in (Kaczorek, 2000, p. 332)):

L0 | |a(t)| _ [A 0| |2:(t) B,
[0 N‘| |fk2(t) B 0 I [xQ(t) + Bs u<t)7
1)
.Tl(t)
ylt) = [Cl 02} m(t)] ,

i.e., the matricestf and A and the fundamental matri-

cesareasin (11) and =[], C = [0, O, | (the

system (1) may be viewed as a parallel connection of the

Subsystem§1 (Al, Bl, Cl) and SQ(N, I, BQ, CQ))

Moreover, we assume that the first nonzero Markov
parameter for (1') has a negative indéxXsee (7)) and we
denote this parameter by ®_; B, 1 < k < ¢, i.e.,

C®_B=C® (, yB=---=C®_(,1)B =0,
17)
Co_,B #0,

andrank C®_; B = p < min{m, r}.

& ac

Note that using (7), (11) and (17), we can write the
transfer function matrix for (1') as

Gls) = C(sb — A)ilB = —CyNF1Bysh=1 — |
— CyNBys—CyBy+Ci(shi— A1) "' By, (18)

i.e., Co®_,B = —CgNk_lBQ.
Define then x n matrix

K_j:=1—-B(C®_;B)"C®_y, (19)

where 4’ means the operation of taking the Moore-
Penrose pseudoinverse (Ben-Israel and Greville, 2002;
Gantmacher, 1988). Recall (Ben-Israel and Greville,
2002; Gantmacher, 1988) that if the matridds and Ho,
where Hy is r x p and Hy is p X m, give a skeleton
factorization of C®_. B, i.e., C®_,B = Hi;H,, then
(C®_yB)Y = HfH}', where H = (HI H,)"*HT

and H = HI (H,HT)™L.

Lemma 1. The matrix K_; in (19) has the following
properties:

(i) K2, =K.,

(i) Y gp:={r:K_ jr=z}=Ker(HI'CP_}),
dim¥_p =n—p,

(iiy Q_p:={r:K_ jr=0}=Im(BHI),
dimQ_p = p,

V) CRM =% 00

) K_yBHI =0, HTC®_,K_j =0.

Proof. SetC’ = H]I' C and B’ = BHZI. Note that the
p x p matrix C'®_;, B’ = H{ HiH,H is nonsingu-
lar. Define K’ := 1 — B/(C'®_;,B')~'C'®_j. Then
K’ , = K_j. Infact, it is enough to observe that
B'(C'®_,B)"'C'®_y,

= BH] (HICc®_BHI)'HIC®_,,

= BHY (H H \H,HI)"'HI C®_,,

= BH] (HoHI) Y (H{ H,)*H{ C®_},

= BH} Hf C®_;, = B(C®_;,B)*C®_y.

The remaining part of the proof proceeds &t , . It fol-
lows the same lines as the proof of (Tokarzewski, 2002a,
Lemma 3.1, p. 42) and for this reason is omitted here.

[

Remark 5. Using (11) and (19), the matriX(_, can be
written in the form

I _Bl(CQNk_lBQ)+CQNk_1

K7 =
F 0 I —BQ(CgNk_lBg)+C2Nk_1

» (20)
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where K_k,g =1y — B2(02Nk71B2)+02Nk71 is pro-
jective (idempotent).

Lemma 2. If in the system (1) a triple,z° # 0, g
satisfies (2), then

CP_gz® =0
CP_(1)2° = 0, (21)
Cl‘o = O7
and
CP_,Bg=—-Cd_ja°.
Moreover,
K_jE2® = E2° (22)

Proof. The equality \Ez® — Az® = Bg is multiplied
successively from the left bg’®_,,...,C®_(;11), and
we use the relationd | F = ®_ ) and® 1A= o
(cf. (11)) as well as (17). In this way we gétd_ 20 =

L, CP_ 1)z = 0. Premultiplying \Ez" — Az° =
Bg by C®_;, we getC®_,Bg = —C®_,2°. Finally,
(22) follows from (19) and from the relation®_,E =
D_ (k1) and CP_ . 1yx’ = 0. [ ]

Lemma 3. If in the system (1') a triplex,z° # 0, ¢
satisfies (2), then

() \E2® — K_;,Az® = By,
Cz0 =0,

K_ Az® — Az® = Bgs,

where ¢ = g1 + g2, g1 € KeI‘(C(I)_kB), gs €

Im(C®_,B)T and g1, g» are uniquely determined by.
Moreover,

(i) Bg1 € Xk, Bga€Q

and go = —(C‘I),kB)J'_C(I),k,TO.

Proof. Let ¢ = g1 + g2 with g;,9o defined
as 91 = (I, — (C®_xB)*C®_;B)g and g» :=
(Co )+C<I> ¢Bg. Then Bgy = K_,Bg and
ng = ( _x)Bg. Thus, K_;Bg: = Bg; and

K ;Bg, =0 (| €., Bg1 € Z_; and Bgs € Q_;). Now,
the equality\Ez® — Az® = Bg may be written as

(i) (AE — K_A)a® + (K_j, — I)Az° = Bg, + By

with the vectors(A\E — K_;A)2° and Bg; in ¥_; and
(K_ — I)Az" and Bg, in Q_j. Note that, in view
of (22), we haveK _j(A\Ez" — K_;Az°) = (AEz® —
K_;Az°). Moreover, K_,(K_j — I)Az® = 0. Now,
from Lemma 1 (iv) it follows that the decomposition (iii)

is unique. This proves the first two equalities in (i). The

expression forgs in (ii) follows from the definition of
g2 and from the relatiorC®_,Bg = —C®_,z" in (21).
Finally, the relationC®_,Bg; = 0 follows from the def-
inition of ¢. [ |

Remark 6. The pencilsEE — K_; A is not regular, i.e.,
det(sE — K_;A) = 0. We can verify this claim by using
the relation K, = K’ , (see the proof of Lemma 1).

det(sE — K_jA)
=det(sE — K" , A)
=det ((sE— A)+ B'(C'®_,B)"'C'®_})
=det(sE — A)
x det [I, + (sE — A)"'B'(C'®_xB') " 'C'®_]
=det(sE — A)
x det [I, + C'®_y(sE — A)'B'(C'"®_,B")™"].

Now we show the equalityC’®_,(sE — A)~ !B’ =

—C'®_;. B’, which will give the desired result. For
this purpose observe first thab_,®;, = 0 for all
i > 0 (see (11)) and®_;®; = —P_(;,_;,_y) for

i = —q,...,—1 (in particular,®_;,®_; = —®_; and
¢ ;P 5 =—P_(41)). Thus, we can write

-1
Z O, P;5 (D

1=—q

O _p(sE— A~ =

= 05T 4+ DD s

+&_,P_;.

Premultiply the right-hand side of the above relation by
C’ and postmultiply the result by3’. Now, in view of the
relation ®_; = 0 forall ¢ > ¢ + 1 and the assumption
C'd_(B' =---=C'®_(,11)B" = 0, we get the desired
equality.

Finally, note that (cf. (19))

K_yA= A+ BF,

where FF = —(C®_;.B)TC®_;, (since® A= ).

4.1. First Nonzero Markov Parameter of a Full Col-
umn Rank

Lemma 4. If in the system (1’) the first nonzero Markov
parameter C®_; B has full column rank, then so does
the system matribP(s) of (1').
Proof. We consider separately two cases.

In the first case we assume that (1’) is squane=£
r) and them x m matrix C®_,B = —CoN* 1B, is
nonsingular. Sincelet P(s) = det(sE — A)det G(s),
we only need to show thatet G(s) # 0. Using (18) we
can write

G(s) = —CoN ' Bys* 1 (1,,, + H(s)),
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where
H(s) = (CoN*"1By) " tCyN* 2 Bys 1
44 (CoNF 1 By)1Cy Bys™ 1)
— (CoNF 1Byt s~ =10y (sI; — A1) ' By

andlims_ .. H(s) = 0. Thus, det(I,, + H(s)) # 0 and,
consequentlydet G(s) # 0, i.e., P(s) is invertible.

In the second case it is assumed that< » and
the r» x m matrix C®_;,B = —CoN*~1B, has the full
column rankm. To C®_; B we apply the singular value
decomposition (SVD) (Callier and Desoer, 1982, pp. 2—
10):

CP_,B=UAVT,
where ther x r matrix U and them x m matrix V
are orthogonal and = [ ] with an m x m diagonal

and nonsingular matrix\7,,. SetB = BV = B,, and
C=UTC = [éf:"m } ,whereC,,, consists of the firstn

rows of C, and observe that/,,, = C,,®_ ;. B,,,. Now we
can write

_ sE—A —-B

PO=1"6¢"
1 o][sE-a -B][1 o0
o UT c 0o llo v|’

On the other sideP(s) can be written as

[sE— A —B,,
Pis)=| C, 0 ;
L ér_m 0 .
where
P'(s) = SE,i A —-B,
Cm 0
is square.

In order to show thatP(s) has full column normal
rank, it is enough to observe thdtt P’(s) is a nonzero
polynomial. For this purpose we consider the square
system S'(E, A, B,,,C,,) in which the first nonzero
Markov parameterM,, = C,,®_,B,, is nonsingular.

DecomposingCy, = [Crn1 Crn2] With an m x ny

matrix C,,; and anm x ny matrix C,, o as well as

>, B 1
B = |}

} with an n; x m matrix B,,; and an

m,2 B _ _
ng X m Matrix By, o, we get My, = Cp®_ By,
- m,QN’i—lBZn,g. For the transfer function matrix of
S'(E, A, By, Cy,) we now have

G'(s) = Cp(sE— A)7'B,,

~ k—1pn k—1
- m,ZN Bm,28

[ 7m,2Bm,2 —+ cm71(SI1 - Al)ile,L

&

Proceeding analogously as in the first case, we get
det G'(s) # 0 and, consequentlylet P'(s) = det(sE —
A)det G'(s) #£ 0. [

Proposition 4. If in the system (1') the first nonzero
Markov parameterC®_; B —CyNk=1B, has full
column rank, then the system is nondegenerate 4.2 =
Z'. Moreover, \ € C is an invariant zero of the system if
and only if there exista:” # 0 such that

= m

Proof. The first claim follows directly from Corollary 1
and Lemma 4. The proof of the second claim is as follows:

(<) If (23) is satisfied for some\ € C and 2° # 0, then
taking into account the definition ok _;, (19) and setting
g = —(C®_,,B)*C®_;2°, we can transform (23) into
the form of (2).

(=) From Lemma 3 it follows that ifC®_; B has full
column rank, theng; = 0 and, consequentlyAEz® —
K_,Az" =0, Cz° = 0. ]

A —K_ A

o (23)

Remark 7. If in (1) the matrix C®_; B has full col-
umn rank, then the pencil **~5-+4] has the full col-
umn normal rank.. In fact, suppose that

sk — K_kA

=p<n.
C P

normal rank [

This means that at any fixedl € C we have

A — K_ A
C

rank <p<n,

i.e., the columns of are linearly dependent
(overC). In consequence, there exists a vectdr# 0

such that (23) holds. Thus the system is degenerate. This,
however, contradicts Proposition 4.

From the above and from Proposition 4 we infer that
if in the system (1’) the first nonzero Markov parameter
C®_,;. B has full column rank, then the invariant zeros of
the system are exactly those points of the complex plane
where the pencil[ **~%-*] loses its normal column

rank n.

ey

4.2. SVD of the First Nonzero Markov Parameter

In this subsection we apply SVD to the first nonzero
Markov parameter ofS(E, A, B,C) in (1) (see (17)),
i.e., we write (recall thatd < rankC®_;B = p <
min{m,r}):

Cd_ B=UAVT, (24)
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is r x m-dimensional,}M,, isapxp diagonal matrix with
positive singular values o€®_;B and U and V' are

r x r andm x m orthogonal matrices, respectively, (i.e.,
UTU =1, =0UT, VTV = I, = VVT). Introducing
the matricesV and U”' to the systemS(E, A, B,C) as

a pre- and a postcompensator, respectively, we obtain a
auxiliary systemS(E, A, B, C) of the form

Ei(t) = Ax(t) + Bu(t) (25)
y(t) = Cu(t),
where B
B=BV, C=U'C
and
a=VTu, g=U%y (26)
are decomposed as follows:
_ . - L la ]
B = |:BP BM*;D:| ) O - C—,Tip )
(27)
u = _ﬂp y Y= _gp )
Um—p yr—p_

and B, consists of the firsp columns of B, while C,
consists of the firsp rows of C. Similarly, %, consists
of the first p rows of vectorz and g, consists of the first
p components of vectog.

Itis clear (cf. (17), (24), (26) and (27)) th&t®_ ;. B
is the first nonzero Markov parameter for the system (25),
as well as that

CQ,kB: 7Cp<I>_;€B€ 7Cp(I>_kBT_p _ M, 0
Crp®_ 1B, Crpy®_ 1 Bpp 0 0
(28)
ie.,
C,o_ = M,, Co®_By—p =
) p*—k 710 P ) p¥—k ) P (29)
Cr_p®_1B, = 0, Crp®_Bp—p =

which, in view of (24) and (27), can be evaluated as

Buy| [J‘gp

=1-B,M,;'C,®_y.

+
0
0

(31)

Remark 8. The matricesK_;, in (19) and K_;, in (30)

nsatisfy the relationk_, = K_j,. From (24) it follows

that (C®_B)* = VATUT (Ben-Israel and Greville,
2002). Moreover, from (24) and (26) we haggb_;, B =
A. Now, we can write

K_j=1—-B(Co_,B)"Cd_,,
=] — BVATUTC®_,

=1-B(C® 1 B)"C®_, =K ;. (32
The relations (31) and (29) imply
K B, =0, K_;By_p=Bpn_p. (33)

Lemma 6. Suppose that the systefit £/, A, B, C') in (1')

is such that in the corresponding systefiz, A, B, C)

in (25) is B,—, = 0. Then the following sets of the in-

variant zeros (for appropriate systems) coincide:
Zé(E,A,B,C’) = Zg(E,A,B,C') = Zg(E,A,B,,,é)v (34)

where S(E, A, B,, C) is obtained fromS(E, A, B,C)

by neglecting the inputi,, .

Proof. The system (25) has the form

Ei(t) = Ax(t) + Bpiy(t) + Bom—plim—p(t), 35)

When B,,, , = 0 and atriple),z° # 0, g= |7
satisfies (2) (when applied to the system (25)), the triple
A\ a0 # 0, g, satisfies (2) when applied to the system
S(E, A, B,,C) of the form

Ei(t) = Ax(t) + Bpiy(t),

_ (36)
(t) = Ca(t).

Lemma 5. The sets of the invariant zeros of the systems | this way we have shown that i is an invariant zero

S(E,A,B,C) in (1) and S(E, A, B,C) in (25) coin-
cide.

Proof. The claim follows directly from Remark 1(ii). =

For the systemS(E, A, B,C) in (25) we form the
projection matrix

K_k =1 — B(C‘I)_ké)+é¢_k (30)

of S(E, A, B,C), then this X is also an invariant zero
of S(E, A, B,,C). Conversely, if a tripleA, z° # 0, g,
satisfies (2) (when applied to the systeti®, A, B, C))
then the triple), 20 # 0, § = [ 9

gvn—p
arbitrary (since in (35) we havé,,_, = 0), represents
an invariant zero\ for (25). The first equality in (34)
follows from Lemma 5. ]

}, where g,,—, is
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Proposition 5. Suppose that the systef{E, A, B, C) given w # 0 the triple

in (1) is such that in the system§(E, A, B,C) in (25)

corresponding to it isB,,,_, = 0. Then the system (1) 0 1
is nondegenerate. Moreovek € C is an invariant zero A=jw, 2°=10]|, g= |0
of (1) if and only if there exists an® # 0 such that 1 9

AE —K_,A 20— 0 37) satisfies (2) and generates the following output-zeroing in-
C o’ puts. The input
Proof. In view of Lemma 6, we can consider in- cos wi
variant zeros of the systen§(E, A, B,,C). The first u(t) = 0
nonzero Markov parameter if(E, A, B,,, C) is equal to 2 coswt

C®_iB, = ["r] and it has full column rank. Now, _ _ o N
the nondegeneracy of the system (1) follows from Propo- @pplied to the system subject to the initial condition
sition 4 (when applied to the systeri(E, A, B, C))

as well as from Lemma 6. The proof of the second 0

claim follows the same lines as the proof of the sec- z(0) = (0

ond claim in Proposition 4 (when applied to the system 1

S(E, A, B,,(0)). m

yields
Remark 9. Under the assumptions of Proposition 5, the 0
pencil | *¥~E-+4| has the full column normal rank. z(t)=1 0
The proof of this claim is analogous to that given in Re- cos wt

mark 7. Thus, under the assumption of Proposition 5, the
invariant zeros of the system (1') are those points of the
complex plane where this pencil loses its full column nor-

mal rank.

and y(t) = 0. The input

sin wt
u(t) = 0
2sinwt

>. Examples applied to the system subject to the initial condition

Example 1.In the system (1), let

0

[1 0 o] (-1 0 -3 z(0) = |0

E={0 1 0|, A=] 0 -2 0], 0
0 0 0] 0 0 -3 yields

(1 0 1] - 0

B=lo 10|, c=| w(t)=1 0

10 1 ’ A sin wt

and y(t) = 0. ¢
The Smith form of P(s) is
Example 2. Consider the system (1’) with the matrices

1 0 0 0 0 0 ) )
01 0 0 0 0 L 00 -1 00
O 0 1 0 0 0, E=1(01 0|, A= 0 =2 0f,
0 0 0 1 0 0 00 0 L0 01
00 0 0 0 0 i (38)

1 0 -1 !
i.e., the system has no Smith zeros. B=|0 1|, C= 0 1 0
Since the condition (13) in Proposition 2 is fulfilled, 1 0 -

the system in question is degenerate. For instance, at any
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1 O] function equals zero identically (cf. Tokarzewski, 2002a,

Lemma 2.9, p. 28)).
From Corollary 2 we infer that the invariant zeros of

0 0 0] the system are the roots of the polynomialt P(s) =
d ,=—10 0 0. s2(s% + 2s + 2)(s — 2) (which is equal to the zero poly-
00 1 nomial of the system). Thusz! = Z° = {0,2, -1 +
. j1,—1 — j1}. The same result is obtained employing
The first nonzero Markov parameter is Proposition 4 (or, more precisely, Remark 7). Calcu-
. lating K_, in accordance with (20), we get the matrix
Co_ B = -1 0 [#F~E=24] in the form
0 0]’
) (s—2 1 0 0 0 0
rankC®_1B =p=1.In(24) we takeU = —1,, V = 0 s 0 0 0 0
I, and
1 0 s 0 0 1
1 0
A—[O 0]~ 0 0 0 -1 s s+1|. (39
B B 0 0 0 0 -1 s+1
In (27) we haveB = B and C = —C'. Moreover, 0 0 0 0 0 0
L0 -1 0 1 0 1

0
By—p= |1 Now, it is easy to check that (39) loses its full column
0

normal rank exactly at the roots of the polynomial s+
25+ 2)(s — 2). ¢
On ther other hand, for the system (38) we have

det P(s) = s and, by virtue of Corollary 2, the systemis  Example 4. Consider the system (1) with the matrices
nondegenerate and it has exactly one invariant 2e£o00.

This example shows that in Proposition 5 the condi- 0 00 -1 0 -6
tion B,,—, = 0 is merely a sufficient condition of non- E=|01 0|, A=|0 -1 3|,
degeneracy. ¢ 0 0 1 0 0 -3
Example 3. Consider the system (1) with the matrices 1 1
s 10 0 B=1|1 o |, C={012], D:[l 0}.
Ar=|0 0 0|, Bi=|0], 0 0
-1 0 0 1 The Smith form of the system matrix is
1 0 0 0 0
a=[o -1 0,
0 1 0 0 0
0 01 0 0|’
0 1 1 1 0 0 0 (s+2)(s+3) 0
N=10 0 11, B2 = |1}, i.e., Z% = {—2,-3}. Since the condition (13) of Propo-
0 0 0 1 sition 2 is fulfilled, the system is degenerate, i!,= C.
Cy = {1 0 1}, — 3. .
2 1 6. Concluding Remarks
The first nonzero Markov parameter is Sufficient and necessary conditions of degener-
0 0 B acy/nondegeneracy for singular control systems with
Co_,B = - [Ol 02} 9 ! a regular pencilsE — A have been formulated (resp.
0 N By Propositions 2 and 3). Clearly, these conditions apply to
O N?By— 1. standard linear systems as well.

Moreover, it has been shown that if a singular sys-
The system is nondegenerate (cf. Proposition 4) althoughtem is taken in its Weierstrass canonical form, then, un-
the subsystemS(A4,, By, C1) is degenerate (its transfer der some additional assumptions, its invariant zeros can
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&

be characterized as output-decoupling zeros of a closedKaczorek T. (2003): Decomposition of singular linear sys-

loop state feedback system (Propositions 4 and 5).

Further research can be focused on characterization

of individual kinds of decoupling zeros in the context of
the four-fold Kalman decomposition of a singular system
(cf. Kaczorek, 2003).
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