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EXTINCTION, WEAK EXTINCTION AND
PERSISTENCE IN A DISCRETE, COMPETITIVE
LOTKA-VOLTERRA MODEL

Davip M. CHAN*, JouN E. FRANKE"

In a discrete Lotka-Volterra model, the set of points where a population remains
unchanged over one generation is a hyperplane. Examining the relative position
of these hyperplanes, we give sufficient conditions for a group of species to drive
another species to extinction. Further using these hyperplanes, we find necessary
and sufficient conditions where every w-limit point of the model has at least
one species missing. Building on the work of Hofbauer et al. (1987) involving
permanence, we obtain a sufficient condition for one or more species to persist.
Additionally, in the presence of extinction occurring, we take these persistence
results and the previously mentioned extinction results and extend them to
subsystems of the full model. Finally, we combine the ideas of persistence and
weak extinction to obtain another extinction result.

Keywords: extinction, persistence, weak extinction, Lotka-Volterra model,
w-limit set

1. Introduction

Two important concepts in population modeling are those of persistence and extinc-
tion. Much of the current research deals with modeling species on the brink of extinc-
tion (Carroll and Lamberson, 1993; Lamberson et al., 1992), and finding ways to
prevent it from happening. Other modeling projects deal with disease populations
and trying to control their growth (Keeling and Grenfell, 1997).

In this paper, we address the issues of extinction and persistence in a model
of Kolmorgorov-type. We will consider the following n-dimensional model where the
growth factor of each species is a function of a linear combination of the other species,

2y (t+1) 1 (t) Fi(zi(t),22(t),. .-, zn(t))
zg(t:+ 1) _p :L‘g.(t) _ Fy(zy (), 22 (t), ..., zn(t)) )
T (t +1) L za(t) Fo(z(t), za (2), ....,mn(t))
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where
Fi(z1(t), z2(t), . .., mn (b)) = 2\ ( Z a,—jzj) = Z; exp (m - Z a'ijmj) .

Hofbauer et al. (1987) called this model a system of Lotka-Volterra type and showed
that it has many of the properties of the Lotka-Volterra differential equations. The
one-dimensional version of this model was studied by May (1975). He showed that
this system can be chaotic. A two-dimensional version was studied by Comins and
Hassell (1976).

© Each growth function A; : Ry — Ry, X\i(z) = exp(r; — z), is a decreasing
exponential. We will take each 7; > 0 so that the population of each species is growing
when the population is small. Selgrade and Namkoong (1990) called species with this
type of growth function ‘pioneer’ species. We will also take all the a;; > 0. This forces
all of the growth rates to decrease with increases in any population and makes this
system competitive. Franke and Yakubu (1991) established some extinction results
for this system. :

We have four goals in this paper. The first is to contrast the ideas of equilibrium
populations and weak extinction. One may think of weak extinction occurring if,
when one samples the population after many generations, it appears that there are
one or more species dying out. We will show that weak extinction is equivalent to
having no equilibrium population density where every species is present.

The second goal is to give sufficient conditions where a group of species can drive
another species extinct. We will give this condition in terms of weak dominance. The
idea is similar to that of one species driving another species to extinction (Chan and
Franke, 1999; Franke and Yakubu, 1991; 1992; 1993). In this case, two or more species
can cooperate to drive another to extinction.

The third goal is to extend the permanence results of Hofbauer et al. (1987) in
terms of persistence. They gave sufficient conditions for system (1) to have perma-
nence. We observe that their ideas can also be applied to one or a group of the species
and get persistence of each species in the group.

Finally, we extend the above persistence and extinction results to subspaces where
we assume that one or more species is going extinct. Here one can apply the theorems
on the subspaces on which the system is limiting due to extinction and obtain further
extinction or persistence. These tools allow the investigator to predict the long term
behavior of system (1) at many levels.

2. Background

In this section, we will define some basic notation and give some basic results for
o ’ o

system (1). We define Ry = [0,00) and R} to be the interior of RY. RY is the

set of population densities where every species’ population is positive. We denote

F™(z) as the m-th iteration of F, which represents the population densities after

m generations. Further, Fi"(z) represents the population density of the j-th species
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at the m-th generation. Throughout the paper, we will use w(x) to represent the
w-limit set of a point x.

Using the competitive nature of system (1), Franke and Yakubu (1991) establi-
shed that populations stay bounded. For = € R}, let Ot(x) = {F™(x)}5_, be its
forward orbit. Each forward orbit is a bounded set. Note that 0, the origin, is a fixed
point for systeni (1) and R7%\0 is forward invariant, i.e., F(R}\0) C R}\O.

A subset X of R} \O is absorbing if it is positively invariant, and Ot (z)NX #0
for £ € R?\0. We say a plane P is above another plane @ if on each axis the
intercepts of P are above the intercepts of (). The following proposition, which
follows directly from the work of Chan and Franke (1999), establishes the existence
of a compact absorbing set.

Proposition 1. (Chan and Franke, 1999) Let F : R} — R} be the dynamical
system (1). Then there are planes Ppax and Pmin which intersect each positive axis
with Paax @bove Ppin such that if X is the region on and in between them, then X

is positively invariant. Moreover, if ® € R}\O, then there exists an ng = no(x) such
that F™ (x) € X.

In fact, this shows that X U {0} is absorbing for all R} . In this sense, we say
X U {0} is a global attractor for (1) which implies that the system is dissipative by
definition (Hofbauer et al, 1987). In this model, the origin is a repelling fixed point,
and starting at any other point in the system, that point is attracted to A'. Hofbauer
et al. (1987) use a global bounded attractor X to prove their results. For our system,
we can consider X = X U {0}.

Define N(X\;) = {x € R} | /\,;(E;;l aiz;) > 1}. N(X;) is the set of popula-
tion densities where the population density of species i is nondecreasing. We define

[o]
N()={z e R} ]/\i(E;’:l a;jzj) > 1} which is the set of population densities where
species i is strictly increasing. So ON();) is the set of population densities where
species i remains constant in the following generation. For this model ON(A;) is
part of a hyperplane which we will denote as P¢. Thus,

n
PZ:{iDEIRn ITZ‘ZO{”,CLJ:O}J
=1

and ON()\;) = PPN RZY. Since all parameters are positive, each P* intersects each
positive axis and so cuts R} into two pieces, one of which is bounded.

o P
We say that the i-th species, or species i, goes extinct if for all x €RY, the i-th
component of every w-limit point of x is zero, i.e., if p € w(x), then p; = 0. If one
or more species go extinct, then the system exhibits extinction.

We say a system exhibits weak ezxtinction if for every x E}IORSL_ and for each
y € w(z) we have y € ORY}, ie. for each y € w(x) there exists a j such that the
j-th component of y is zero. Thus each w-limit point is a situation where at least one
species is missing. It is easy to see that extinction implies weak extinction, but weak
extinction covers many more cases and so the converse does not hold, see Example 2
in Section 3.
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We say a species 1 weakly dominates another species j, if N(X;) CN(A;). Ad-
ditionally, we say a group of species 1,2,...,I — 1 weakly dominates a species [ if

N(X\) CUj=1,.. -1 N(X\;). This gives us that when species ! is not shrinking at least
one of the other species is growing.

Example 1. In the following system, species 1 does not weakly dominate species 3,
nor does species 2 weakly dominate species 3. Together, though, species 1 and spe-
cies 2 weakly dominate species 3.

)

Fig. 1. Two species weakly dominating a third.

z1 (¢ +. 1) z1(t) exp(l — .5z1 () — .5za(t) — 1.123(t))

za(t+1) | = | z2(t)exp(l— 1.5z (L) — L.5za(t) — Bza(t)) | . (2)
z3(t +1) z3(t) exp(l — 21 (t) — z2(t) — 23(t))

For this example we have the following planes as seen in Fig. 1.
Ph = {a: = (z1,72,23) € R” | 1 = .52y — .bzy — Llzg = 0};
P? = {z = (21,32,23) € R" |1 — 1.52; — 1.529 — .53 = 0},

P3

{:L‘ = (z1,22,23) ER" |1 — 21 — 22 — 73 :0}.
¢

A species | persists or is persistent, if there exists an n > 0 such that for each
x €RY we have

liminf F{™(z) > n.

m—co
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Biologically, this means that species [ grows to a minimum level and stays above that
level. If all of the species persist, then we say that the system exhibits permanence.

Many of the proofs in the following sections use Lyapunov or Lyapunov-type
arguments. In these arguments, we will use a particular function called a Liyapunov
function. A Lyapunov function for a dynamical system F with respect to a positively
invariant set W is a positive, continuous function that decreases along orbits in - .
An eventually Lyapunov function is a positive, continuous function that, after a finite
number of iterations along an orbit, decreases on the remainder of the orbit. One of
the useful results for Lyapunov or eventually Lyapunov functions is the following.

Lemma 1. Let X be a metric space. If V is an eventually Lyapunov function for
o discrete dynamical system, F : X — X, with respect to a positively invariant set
W CX and q € W, then for all p€ w(q), pg W.

Proof. Let g € W and p € w(q). Suppose p € W. Then there is a k such that for
p' = F&(p) we get

V(F(p"))/V(p') <1 (3)

Note that since p' is in the orbit of p, p' € w(g). From (3), we can conclude
that F(p') # p'. Let 3e = V(p') — V(F(p')). Let B; and B, be open balls with
radii §; and &, about the points p' and F(p'), respectively. Choose d4; and 42
such that By N Bs = 0 and for 1 € By, |V(z1) — V(p')| < ¢ and for zs € By,
|V (z5) — V(F(p'))| < e. We can do this since V' is a continuous function.

Now note that the orbit of ¢ must enter Bj, then Bs, and then B; again
since p' and F(p') are in w(g). This would imply that V increases, which is a
contradiction. Thus p’ and p ¢ W. |

In obtaining our extinction results, we utilized a few aspects of convex cones. A
subset K of R™ is a convex cone if

1. aK C K for scalars o > 0, and
2. K+ K CK.

K is a solid cone if its interior is not empty. One may construct a convex cone K by
starting with a convex set A and use all the rays from the origin which go through
points in A.

3. Weak Extinction

In this section, we will prove that, if system (1) has no equilibrinm population density
with all species present, then the system exhibits weak extinction. This implies that
the w-limit set of every interior point is a subset of the boundary. In order to prove
this, we need some results from cone theory. The main result is the following which
is due to Berman and Ben-Israel (Berman 1973), in which the range of A is denoted
by R(4).
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We can rewrite this system as the matrix equation
Ax =7,

where A is an ! xn matrix, and = and r are nx 1 and [ x 1 vectors, respectively.
Using Corollary 1, we see that either r ¢ R(A), or there exists a ¢ such that 0 #
ATec e K* and Zizl i < 0.

Suppose that r ¢ R(A). Since [ <n, A cannot be of full rank; thus 4 must be

degenerate. If A is degenerate, then there exists a ¢ = (e1,¢2,...,¢) such that
1 n
ch(Zakj;cj) =0 (4)
k=1 j=1

for all € R™. Furthermore, since any fewer rows of A are consistent, we have that
for each 1 <i <1, ¢; # 0. Note that the first I — 1 equations are consistent, and so

have a solution Z ¢ IO( , which satisfy the first [ — 1 equations. Thus

-1 n -1
E Ck( E Ozkji'j) = Zci’f‘i.
k=1 j=1 i=1

e o
But the system of [ equations is not consistent in % . Since (4) is true for all = €,
and in particular at &, we must have

I
Z CrTk 75 0.
k=1

Otherwise, Z would have to satisfy the I-th equation and the system would be con-
sistent, which is a contradiction.

From (4), since the c;’s are nonzero and the a’s are positive, there must be an
i and j where ¢; > 0 and c¢; < 0. Without loss of generality, assume that

I
Z e < 0,
k=1

otherwise negate c¢. This gives us that

m

!
Z Ck ( Z akja:j) > Z CLTE.
k=1

=1 7=1

o

On the other hand, if there exists a ¢ such that 0 # AT¢ € K* and

l
D e <0, ' (5)

=1

then for this ¢ using a cone property we have for all = ¢ I% ,
z .

cTAx = ch(idw%‘) > 0. | (6)

k=1 =1
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Note that if there exists an 1 < 4 <[ where ¢; = 0, then the system of equations

o
not including the i-th equation is consistent. So there exists an = €K where

I
Tl Ax = E CLTE-
k=1

Thus, we must have ¢; # 0 for all 1 <14 <{. Note that from (5) we have that there
exists an 7 where ¢; < 0 and from (6) we have a j where ¢; > 0. Putting (5) and (6)
together, we again obtain

[ i

EZ: Ch ( Z O‘k:.-imj) > Z ChT k-

k=1 j=1 k=1

Now for either case we let ¢; = 0 for [+ 1 < i <n, this gives us

n n n
Z CrL ( Z Oékj.’lij) > Z CrTE-

k=1 7=1 k=1
This completes the proof. ]
In fact in the above proof, we actually prove a stronger result which is the follo-

wing.

Corollary 2. Let I{f DR} be a convex cone and P' = {x € R* | r; — 30 ajzy =
0}. If '

i

(N PNE=0

=1
but

() PN K+

€A
for each A, a proper subset of {1,2,...,1}, where 2 <1 < n, then there ewists a
c=(c1,co,. .. ) with ¢; #0 for 1 <i<1 such that

n

X]:r (Zam )>k’§ckm.

k=1
Moreover, there exists an 4,7 € {1,2,...,1} where ¢; >0 and ¢; <O0.

Now we are ready for the weak extinction result. We show here that, for our
system, the lack of an equilibrium distribution with each species present is equivalent
to weak extinction. Also we note here that it is not difficult in general to determine
whether an equilibrium distxibution with all species present exists or not. One can
either check to see if NP, PN ]R{ is empty or not, or check to see if the system

° P
{37 aijz; = ri}7, is consistent or not relative to RY.
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Theorem 3. System (1) ezhibits weak extinction if and only if it does not have an
equilibrium population density with all species present.

Proof. First note that, if system (1) does have an equilibrium population density with
all species present, then the system cannot exhibit weak extinction since there would
be a point whose w-limit set is not a subset of the boundary.

On the other hand, if there does not exist an equilibrium population density

. o,
with all species present, then N2, P'N RY= . So letting K = R} we obtain by
Theorem 2 a ¢ = (e, ¢, ...,¢,) Where

n

ch(iak‘jmﬁ > ickv’k (7)
k=1

k=1 =1

is true on RY.
o,
Now define V :RY— R} to be

. — €1 .C2 .C
V(zy,zo,. .., 2y) =z 25?2l

We will show that V is a Lyapunov function. For ¢ E]logll, compute the ratio of V
applied to F(q) and ¢q. This gives

VE@D) o (S X (o))
—— = exp ch, . et M oo L
Vig) ph i / /

but from (7) we get

o o, o
for all ¢ €RY. So V' is decreasing along orbits in RY. Note that R} is positively

o
invariant, so by Lemma 1, for all ¢ E]loﬁ, w(g) C O RY. Thus, the system exhibits
weak extinction. |

This gives a nice condition to determine whether weak extinction occurs, and
thus have completed our first goal. At this point we would like to comment on weak
extinction. If a system exhibits extinction, then it also exhibits weak extinction. But
weak extinction also includes mutual exclusion. In the following section, we will use
a slightly stronger hypothesis and prove a particular species goes extinct.

Example 2. The following is an example of weak extinction that does not have
extinction. There is no equilibrium points with all species present. This implies the
system exhibits weak extinction. Also each of the equilibrium points on the axes z!,

[e]
22, and 2% is locally attracting. Hence there are points in RY which limit on each

of the points 2!, 22, and z®. Thus, no species goes extinct.
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Fig. 2. Weak extinction without extinction.

We have
z1(t + 1) 21 () exp(l — .5z1 (1) — z2(t) — 1.523(1))
z2(t+1) | = To(t) exp(l — Tz1 () — Haa(t) — Txs(t)) . (8)
z3(t + 1) z3(t) exp(l — 1.524 (t) — .75z 2(t) — 5z3(t))

For this example we get the following planes as seen in Fig. 2.
Pt = {:1: = (z1,72,73) ER" | 1 — 5z — 20 — 1573 = 0},
pP? = {m = (21,72,23) € R* | 1 — Ty — By — 703 = 0},
P? = {z = (z1,22,73) € R" | 1 = 1.531 — .75z — 533 = 0}.
¢

4. Extinction

In this section, we generalize the ideas of Franke and Yakubu (1991) where they
showed that if one species weakly dominates another species, then the latter will
be driven to extinction. By geometrically describing how a group of species weakly
dominates another species, we show how a group of species can cooperate to drive
another to extinction. In this case, none of the cooperating species would drive the
doomed species to extinction alone. Referring to Example 1 in Section 2, this is an
example where the first and second species drive the third to extinction.

To show a species goes extinct, it is necessary to show that the w-limit set for
each interior point of R7 is a subset of one of the faces of R’ . Species i goes extinct

if limmoo B (x) = 0, for every x 6]1%1 We establish this by finding a particular
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Lyapunov function that has enough information to give extinction of a species. The
following proposition proves that a Lyapunov function of the form

)= H”

whele each ¢; > 0, is sufficient for this task. For a collection A, we define Ry ={x¢
% | Il,cq i # 0}. We denote the complement of this set relahve to R} as

Si={zery | [[w=0}.
i€A
Note that S} UR} = RY, and that S} NRY, = 0.
Proposition 2. Let F': R} — R} be the dynamical system (1) and let V : RY . —
R, be defined by
z7'

R Y

I/(.'L'l,.'figr . ‘)xﬂ) =

where ¢; > 0 for each i. If V is an eventually Lyapunov function for F with respect
to RY ,, q G]R+ and p € w(q), then p; =0, i.e. the l-th species goes extinct.

Proof. Let V(z1,29,...,3,) = ;' /(25" - - - 2;'}") be an eventually Lyapunov function

for F withrespect to Rf , andlet ¢ € R} DIR{+ Note that each face and subface
of R} is invariant and ‘that no species can go to extinction in finite time, so R
is an 1nva11ant set. By assumption, there is a k' such that k& > k' gives
V(P (q))
V(F*(q))

Now using Lemma 1, if p € w(q) then p ¢ Ry ., which implies that p € S} ;. So

ol

<1

1—_[5;:1 pi = 0, Le. one or more of the p;’s are zero, where j € {1,2,...,1}. Suppose
that p; # 0 and one or more of the p; =0 for j € {1,2,...,1 —1}. Let {£}2, be
such that lim; o, F*(q) = p. By the nature of V, the set {V (Fi(q)) |i=1,2,... }
is unbounded since p; =0 and p; # 0. This is a contradiction since V is eventually
decreasing along orbits. Thus we must have p; = 0. [ |

In order to use this Lyapunov result, we need to obtain a Lyapunov function
in the form of (9). This is achieved by accurately describing the geometry which is
involved when a group of species weakly dominate another species. The following
several lemmas and theorems describe this geometry which is then finally used in
Theorem 6. Theorem 6 is the main theorem in this section and shows how a group
of species can drive another species to extinction.

Recall that N ();), the set of points where the population of species i remains
constant in the following generation, is part of a hyperplane which we denoted by P?.

Hence
n

ON(\;) C P’ = {a: ER™ | r; — Zaijl'j = 0},

=1
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and ON(X\;) = P*NR}. Note Pt divides R7. into two pieces, one piece where the
following generation decreases and

n
Ty — E Q% < 0,
i=1

and the other piece where it increases and

n
T — E Qx5 > 0.
j=1

The origin is in the latter piece.

We say that point @ is covered by a plane P?, if x is on the side where
k3
T — E ai;z; > 0,
g=1

and so is on the same side as the origin. Similarly, we say a set S is covered by Pt if

n
T — Za‘,;jwj >0
=1
for each = € S. A collection {P*, P?,...,P'} coversaset S if for each = € S there

isan i€ {1,2,...,0} where P' covers z.

We use this idea of covering a set with a group of planes to define geometrically
how a group of species weakly dominates another species. In the following results, we
are considering one species being weakly dominated by a group of species. We will
relate each species in the group with its corresponding hyperplane P? and the species
which is being dominated by the hyperplane L. So in an n-dimensional model where
ome species is being weakly dominated by a group of species, the group can be made
up at most of n — 1 species.

We say that a collection of planes {P*}% | is a cover for a plane L relative to a

cone K if LN Io{ # ( and for each = € L N IO( there is a 1 < j < k such that
is covered by PJ. We say that a collection of planes {P*}¥, is a minimal cover
for a plane L relative to K, if {P*}¥ | is a cover for L relative to K and if for
any proper subset A C {1,2,...,k}, {P'}ica is not a cover for L relative to K.
Additionally, a collection of planes {P*}!_, is a partial inimal cover for a plane L
relative to K, if there exists a minimal cover {P*}%_ such that {P*}._, is a proper
subset of {P*}E,.

It is important to note that, if we have a cover for a plane L relative to K, then
there is a subcollection of the cover, which is a minimal cover for L relative to I.
Also note that the minimal cover is not necessarily unique and it is possible to have
two minimal covers for L relative to K which are of different sizes.

Once we get a minimal cover for L relative to a cone K, we will discuss how L
is covered. To do this, we will divide L into sections where in each section we keep
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track of which planes are covering it. We will denote the sections by the following.
Define

Lfg={zel NK |z iscover by Pi each i€ A
and is not covered by P? foreach j € B\A},

for sets A C B C{1,2,...,n}. So L4 is the part of plane L in the cone IO( where
the planes {P*}ica cover it with respect to the (partial) cover {P'};cp. We will also
denote LY as the part of L which collection B does not cover.

Now using these minimal covers, we have the following useful lemmas. This first
lemma deals with some of the properties involving the planes P*, P2, ..., P* and L.
Note if we only need one plane to cover I, then this case is covered by Theorem 1 in
(Franke and Yakubu, 1991).

Lemma 2. Let K be a convex cone containing R% . Let {P*}*_, be o minimal cover
for a plane L relative to K and suppose k > 1. Then

1. PPALNK#D forall 1<i <k,
2. PiﬁPjﬂIO(#Q] for all 1 <4,5 <k,
3. L‘l)mj for 1<j<k-—1 and L717 for 1 <j <k are nonempty, convex sets,

4. Li:_’}; is an open set relative to L for all 1< j < k.

Proof. Part 1: Suppose there exists an 1 <4 < k such that PN L N I%: #. Then
either P* covers L or P* does not cover any point in LN K. If P' coveres L, then
k =1, a contradiction. On the other hand, if P? does not cover any point in LN ]O( ,
then P* could not be a part of the minimal cover, and thus PN LN IO( £ .

Part 2: Suppose there exists an 4 and j such that PN PN = (). Then we
have either P” covers P7 or vice versa. In either case the lower plane is unnecessary.

Thus P’ N PiN K+ 0.

Part 3: Since {P'i}:zzl is a partial minimal cover, some point in L N K s not
covered. Hence, L?mj must be nonempty. Also for a partial minimal cover or a
minimal cover, L§7 must be nonempty, for otherwise P* would be unnecessary and
the cover could not be minimal.

To show convexity, first note L N I(;' is a convex set and each hyperplane P°
divides L into two convex sets. Let z,y € Li,__j (or =,y € L(I’]) Then since =
and y are in the same section, each is covered and not covered by the same planes.
Thus x and y are on the same side of each plane and so the line segment connecting
them must also be on the same side. Thus the line segment is covered and not covered
by the same planes, so the entire line segment isin LI (or LY ). Therefore Li i

1oej 1o-g
and LY ; are convex.
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Part 4: Note that each P? splits L into two pieces. The piece it does not cover

N . e]
is LY. The other which it does cover is L;. Since P* NLN K is not covered, it is part
. . ; . . o . 1oeej .
of L?. This leaves L! as an open set relative to L since K is open. Ll‘_,é consists

of points in L N K which are covered by every plane, so

Since we have an intersection of open sets, the intersection is also open. This completes
the proof. ]

Note that if k = 1, Parts 2, 4 and the second part of 3 of Lemma 2 also hold.
We will use the brackets, (-), to denote the convex hull of a set of points. For
example, (x1, s, T3) is the convex hull of the points xi,xs, and x3. We will use
a circumflex, ,f in a list to denote the absence of ¢ from the list. For instance,
(T1,%2,...,&j,...,¢p) represents the convex hull (zy,T2,...,Zj—1,Tjt1,. .-, Tp).
The next lemma gives some of the geometry that exists hetween the Lj.. ;8-
Lemma 3. Let K e a convex cone containing R} . Let {P*Ye, be a partial minimal
cover of a plane L relative to K, and x; € L} ; for i =1,2,....k. Then xz; ¢
(T1,@2,...,&j,...,xg) for each 1 <j <k.

Dynnf Qe ) j
Proof. Since x; € L., _
is on the other. Since zi,...,&;,...,x; are on one side of P7, so is its convex hull
(1, T2y s Tjy -, Tp). Thus x; & (X1, T2,..., Ty, ..., T)- | |

we have xy,...,&;,...,Tx are on one side of P7 and x;

Since z; ¢ (x1,%2,-..,&;,...,Tx), each x; is an extreme point of the convex
hull (Coppel, 1998). For a convex hull (zy,x2,...,xr), we can find a smallest di-
mensional linear subspace which contains it. Relative to this linear subspace, the
boundary of the convex hull consists of lower dimensional convex hulls or faces. In
particular, these faces can be written as convex hulls with fewer points (Coppel, 1998).
‘With this in mind, we have

k
8(13]_,173,. . . ;mk) C U<m1’$2""7"'i:.7'?"’7$k7>'
Jj=1

If the convex hull has dimension k — 1, we obtain equality of the above sets.

When adding a new planes P’ to a partial cover, one can look at a co-
nvex hull of points (xy,®s,...,%;_1) where x; € Li_, | N P'. The convex hull,
(xy1,T32,...,T;—1), is a means of describing how the new plane, which would contain
(¢y,22,...,T_1), fits relative to the partial cover {P', P%,..., P'=1}. With this in
mind, we have the following lemma.

Lemma 4. Let K be a conves cone containing R? . Let {P}f_, be a partial mi-
nimal cover of a plane L relative to K, and x; € Ly, for 1 = 1,2,... k. Then
(1,22,...,2) cannot contain a point of both L?_“k and L}jjji‘;’.
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Proof. We will prove this by contradiction. Suppose p € L? (X1, e, ..., z;) and
q € Ly kN (zy,zy,...,x) . The ray starting at p and going through ¢ has to pass
through P!, P?,... P* and cannot cross them again. Thus past g, the ray stays
in Ly}, The ray will eventually hit a face of (@1, s, ..., xr) . Using Lemma 3 we
ek

k

have each face is in some L,
finishes the proof. =

and so misses L%jjj{f. This is a contradiction and

The following lemma gives more geometry involving the pieces of L. Here we
show how the sets L9 , and L}* sit relative to each other and thé other L s

Lemma 5. Let K be a conver cone containing R% . Let {PY_| be a partial mi-
nimal cover for L relative to K, k > 1, and x; € Li ., for i =1,2,.. k. I
(@i, @2, .., @p) N LY. =0, then (@1, @2,...,2p) N LIE £,

Proof. We will prove this by induction. Suppose that %k = 1. Then for x, € L1, we
have (x1) N L{ # 0. This proves the case for k = 1.

For a better insight into the proof we will provide the case where %k = 2. Let
xy € L}, and @3 € L}, Since @, is covered only by P!, the line connecting w,
and x5, (x12), must intersect P'. Likewise, since x» is covered only by P2, (T129)
must intersect P? as well.

Now consider going from x; to z»; if we intersect P! first, then this point
of intersection on P! is not covered by P! by definition. It is not covered by P2
either and so it isin LY,. Note that if the line intersects P! and P2 simultaneously,
then this point is also on L, by definition. So the line must intersect P? first and
then P!, so there are points that are covered by both the planes on the line. These
points are in L73. Thus (zyz2) N L1 # 0. This proves the case k = 2.

Let {P":}'F‘:1 be a partial minimal cover for L. Let z; € Li,,k. Suppose that
(1,22, ,xx) N LY, = 0. We would like to show (1, o, ..., zp) N LLE £ 0.
Noteif (xy,x2,...,2,_1)NLY ,_, # 0, then since these x,’s are not covered by P*,
(@1, @2, .., xp1)NLY | # 0. This implies that (zy,x,...,zj5_1) NLY , =050

by the induction hypothesis, we must have (z;,x,,... yZp—1) N Li:jjﬁj 0.

This gives us that (zy,x,...,24_1) N L1751 £ ). Choose y; as the point
on P* where the line connecting x; and z; intersects it. Note {(xi,zr) can only
be covered by P* or P*. With our hypothesis (z1,zs, ..., ) NLY , =, the line
must pass through P* first instead of P?; otherwise (1, @a,...,z5) N LY, # 0,
which is a contradiction. Note that the convex hull (y;,%,,..., Yr_1, L) is the part

of the convex hull (zq,zs,...,x;) which is on or below P,

From the above, we have that y, € Lt . _,, since we have only intersected P*.
Thus (y1,ys, -, Yey) NLUET] # 0. Let 2 € (yy, 40, y5_1) N LEF1 and
consider the line (zz;) connecting 2z and z;. Now from Lemma 2, L1 s
an open set, so we can find in L an open ball B(z,¢) centered at z with radius
e > (0 which is contained in Li:j:ﬁj. We have that z is on P* and z; is below
P* and so (zzx)\z is below P*. Now ((zz;)\z) N B(z,¢) # 0. Thus, we have

(Y1, Y25+ s Yp_1,Tk) N L1% £ (0. This gives us our lemma. |
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Next we would like to show the existence of a convex hull that intersects Li ¥
This will be useful in a later theorem. To do this, we first prove the next two lemmas.
The first of these lemmas describes another relationship between the sets L? , and
L’l - We show that they sit next to one another by showing they have a common
boundary.

Lemma 6. Suppose {P'}r_| is a partial minimal cover for L. Then, relative to L,
QLY. NOLY ;, #0
for each 1 <4 < k.

Proof. Let 1 <4 < k, and since Ltl)__k and Lll,‘ are nonempty, let = € L?,,,k and
y € L' . Consider the line, (z,y), connecting = and y. (x,y) is above every
plane except P*. Also (x,y) must intersect P? and only P*. Let z € P* N (z,y).
Since z € LY., we have (z,2) C L., and (z,y)\z C Lj . This gives us that
z € 0Ly , and z € dL; . This completes the lemma. |

This next lemma shows how the hyperplanes P%s sit relative to the Lt ,’s. We
show that each hyperplane makes up part of the boundary of each Lj., by showing
PINLi. ., #0.

Lemma 7. Suppose k> 1. If {P'}E_| is a minimal cover for L, then for each pi
we have

PINLi .70
for each 1<i<k, 1<m <k, and 1 #j.

Proof. First we will show P* N Li , | # 0 for all + < k. If this is not frue,
then there exists a j such that Pk N L{_i_k_l = (. Since L.’i,,_k_l is convex, it lies
completely on one side of P*. Also note that, since {P*}%_, is a minimal cover for L,
L0, _, is covered by P*. But {P',P?,...,P* '} is a partial minimal cover for L
and by Lemma 6, L , NOL) , # (Z) Thlq implies P* must also cover L B
and thus P7 is obsolete This contradlcts the assumption that {P'}r_; is mlnlmal
Therefore P*NLi ,_, #§ for 1 <i <k — 1. Further, since P* N L'mk_1 # 0, let
xeP*NLi , | Then z € L! ,. Thisgives PFNLi , #0 for i # k.
Note that L! ,  C Lt . for 1<m <k-—1 So

PknLl m#w

for each 1 < m < k, and i # k. Thus P* has this property. By reordering the
hyperplanes, we have this true for all 1 <4 < k. This proves the lemma. |

Now we are ready to show the existence of a convex hull which intersects L};jj’,j.
In fact, putting together this next result and Lemmas 4 and 5, we have that any
convex hull made from points located in each Li,_,k must intersect either LY , or
L% and not.both.
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Lemma 8. Let K be a convex cone containing R} . If {P'}}_ is a partial minimal
cover for L relative to K with k > 1. Then there exist x; € Ly g for 1 <i<k
such that (x1,xy,...,xp) NLIE £ 0.

Proof. We will prove this by contradiction. Let {P!, P?,..., P*} be a partial minimal
cover for L relative to K. We will assume that for all choices of z; € L} , we have

(wlam?,a s 737].’:) nL?k 7é @

Otherwise, by Lemma 5, we would be done. We assume that L has a minimal cover,
say {P',P?,...,P™} where k < m < n. Now add P*! By Lemma 7, Pk
intersects each P} . for 1 <1 <k. Solet =} € P*'n Li . # 0. By assumption
we have

(x},@3,...,zpyN LY, #0.
This implies that {P', P?,...  P**1} is not a minimal cover since P¥+1n LY . #0
is not covered.

Now let y; € L} ;. Note that L , ., C L , andso y, € L' . This gives

<yl)y27 Tt 7yk> N L[l)l\ 7£ @

But since each y; is not covered by P**1 (y,.y,,..., Yi) 1s not covered by P!,
Thus

(ylayza R yk) N L?-~k+1 ?é (Z):

and

(Y1,¥s,- - 7'Uk+1> n L?--Ak—i-] #0.

We can add P2 to the partial cover {P',P?,..., P¥1}. Again, let y* € P2
LY. k41 # 0. From above, we have PF¥2NLY | # 0 and so {P', P2 ... P2} ig
not a minimal cover for L. Repeating this argument, we see that we cannot cover L.
This is a contradiction, which completes the proof. R

We are interested in the intersection of the P* planes with L. For a collection
A C{1,2,...,n}, we denote by T the intersection of the planes {P'}ica with L
in a cone K. Hence

k
r''*=MPnNnInk.

=1

We want to show that this is nonempty for a partial cover. It would have to be
empty for a cover by definition of a cover. We will then use this idea in constructing
a Lyapunov function of the form needed to determine extinction as in Proposition 2.
The following theorem sets up our main result.
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Theorem 4. Let K be a conver cone containing R} . If {P%Yr_| is a partial minimal
cover for L relative to I with k> 1, then

ko o
1. TVF = (N PPN LN K has codimension k in L, and
i=1

2. For i = 0,1,2,...,k, if ®; € Lt _, and (x1,@,..., @) N Li=k £ 0, then
<CUU,:E1,. .- 7wk> N Flmk # w

Proof. We will prove this by induction. First, let k =1, and so P! is a partial cover
for L. Then by Lemma 2, PN L N K# 0. Let zo € LY., and @y € L} ;; then

(xo,x;) must intersect I = PN LN K. Since P* # L, T* = PNL N K has
codimension 1 in L.

Now assume {P'}%_ | is a partial minimal cover for L and that for any subcol-
lection of {Pi}¥_, the above conditions hold. Using Lemma 8, let z; € L}, such
that (xy,a,...,z5) N LIk # 0. Lemma 4 gives (x1,Z2,...,Tg) N LY . =10. Note
that @; € Lt , | for 1<i<k—1 If (x1,29,...,Tf-1) N LY ._; # 0, then since
(r1,Ty,...,Tp—1) is not covered by P* (x1,@s,...,xp—1) N LY ., = 0. This gives
(€1, 29,...,x5—1) N LY , = 0. Now using Lemma 5 we obtain (z1,z>,... , Tp—1) N
Ly #0.

Since (z1,Z2,...,Tx_1) ﬂL}:j:ﬁj # (), we have by the induction hypothesis that
(zo, @1, ..., Tp_1) NTL =1 £ . Since @; is not covered by P* for 1 <i <k~1,
(g, x1,...,Tx—1) is not covered by P*. Thus {(xo,T1,...,Tk—1) must intersect
't %=1 above or on PF.

Since xj € LY ,_,, we also get by the induction hypothesis, (z1,22,-., ) N
I1k=1 £ (. As in the proof of Lemma 5, let y; be the point on P* where the line
connecting x; and xj crosses P*. So (y,,Ys,--.,Ys_1,Tk) 1S the part of the convex
hull (@7, xs,...,2;) which is on or below P¥%. Since (z1,T2,...,zx) N LY . =0,
(Y1, Yo Yporr Zr) N LY = 0. This implies that (y;,¥s, .-, Yp—) N LY, =0,
and (Y,,Yg,.- > Yp_1) NTT* =0 since T+ C LY .

By assumption, we have (z1,Z2,...,Zg) N L%jﬁjﬁ # § which implies
<yl:y2) s ayk—jbxk) n L{'}; 7& (Z): since <$1,.’Bg, s Th=LY1 Y- 7yk,—l> is on
and above P* and so does not intersect L1~ %. We also have (yy,¥a,.- > Yp—1,Tk) N
Tlk=1 £ ( by the induction hypothesis. ~But since I''"* < LY , and
(Y, Uss - Upey) N TV % =0, (y1,Ys,- -, Yp_y,Te) must intersect T'** be-
low P¥. Using this fact and the fact that (zo,z1,...,2;_1) must intersect '+~
above or on P*, we obtain

(:EQ,JJ] ) .,ka> Ntk #* 0.

Now since (@1,...,xy) intersects I''"*~1 below % and (zo,z1,...,2) N
[hk 2 9, this implies that 'k = nk_, P N L has codimension one higher than
' k=1 or codimension k. u

Finally, the goal of all the preceding geometry leads to the following theorem
that gives us that I''"* is nonempty for a partial minimal cover.
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k

4=1

Theorem 5. Let K be a convex cone containing Ry . Let {P
manamal cover for L relative to K and suppose that k > 1. Then

be a partial

k
b= (PPN LN K+ 0.
=1
Proof. This follows from the previous theorem. |

Next, to complete our second goal, we present our main extinction result. This
result is an extension to the extinction result of Franke and Yakubu (1991) where
one species weakly dominates another species. In the following, we show that two or
more species in our competitive system can cooperate to weakly dominate a species
and drive that species to extinction. Biologically, this means that if at least one of a
group of species is growing whenever some other specified species is not decreasing,
the specified species goes extinct.

Theorem 6. If species 1,2,...,1—1 weakly dominate species 1, then species | goes
extinct.

Proof. By definition, if species 1,2,...,] — 1 weakly dominate species [, then

N(\) C U o).

i€{1,2,...,1-1}

Without loss of generality, assume that for any proper subset A € {1,2,...,1 — 1},

o

N(N1) € Uiea N(N;). Otherwise, we can find a ‘smallest’ subset for which it is true

and then do a renumbering. Note that N () C Uief1,2,...,1—1} V(X;) implies that
!
(P Ry =0,
=1

and that {P*, P?,... P'~1} forms a minimal cover for P! relative to R .
[e]

Since N (A1) is closed relative to R} and U;es N();) is open relative to R},
for each point x € ON()\) = P'NRY, there is an e-neighborhood in R" of =z, call
it M(z), which is covered by {P*,P? ..., P'='}. Let

z= |J N@nP.
TEIN(A;)
Z is openin P! and covered by {P!,P?,...,P1}. P\Z and ON()\) are closed

disjoint sets in P! with ON();) compact, and so there is a minimum distance between
the two, say ¢ > 0. Now construct D = §-neighborhood of AN();) relative to P'.

D is a convex neighborhood of AN () with dN()\) C D and D is covered by
{PY,P%, ..., P-1},

Construct a cone K using the rays from the origin that go through D. Note
K DR} and by construction {P!, P% ... P!~'} is a cover for P! relative to K. In
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fact, the cover is a minimal cover since R? is contained in K. Note {P*, P?, ... P'}
is still inconsistent on K. Now using Corollary 2, we have a ¢ = (¢1,¢2, ..., ¢) such
that
I 7 i

Zc;;(Zak,jm‘Y») > Z(;k?"k, (10)

k=1 =1 k=1
where 2 <1 <mn, ¢; #0 for 1 <i <[, and there exist i,j € {1,2,...,1} where
ci >0 and ¢; < 0.

Now consider the function V' : R} ; — Ry defined by V(wi,22,...,2,) =

[Tie, =5 For x € RY _, the ratio of V(F(z)) and V(=) is

n

V(F(z)) P exple(r = 30 ayay) - ap expla(r = 37, aiye;))
Viz) oyt

exp IZci(ri—zaijmj) ) (11)

i=1 j=1

I

Note that (11) is a continuous extension of V(F(z))/V (z) to all of K. From (10),
we have
I ”
Z C; (M - Zaijmj) <0,
i=1 j=1

for K D R} . This implies

V(F L
%(g—)l:gx;(m) <1

for x € R ;. Thus V is Lyapunov with respect to Ry .

Now {P',P2...,P% ... P!} is a partial minimal cover for P'. Using The-
orem 5, we get THi1=1 £ (1. Solet @ € I''"3'=L Note that x is on each plane
Pt 1<4 <1, except P?. It is on P! and so it must be covered. In fact, it must be
covered by P7 since it is on every other plane.

Consider V(z). Since z is on each plane except P7, every species except species
j will remain constant in the next generation. Also since z is below P7, species j
will grow. But we have that V' is decreasing, thus ¢; < 0. This gives ¢; < 0 for
je{1,2,...,1 —1}. By Corollary 2, there exists an ¢ € {1,2,...,I} where ¢; > 0.
We then have ¢ > 0, and V has the form

Ci
T
N _ !
V(zy, o, %T0) = 71
Tyt
Thus by Proposition 2, we have that species | goes extinct. |

In a following section, we will make use of the Lyapunov function derived in the
above proof. The following corollary is immediate from the above proof and will be
used later.
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o}

Corollary 8. If N(A) C U2 i—1y N(X\) in RY, then there exists o ¢ =

2 2yens

(er1,¢2,....¢1) with ¢ >0, and ¢; >0 for i€ AC{1,2,...,1— 1} such that
A (@) [T A (@) <1
i€A

on R}\O.

5. Persistence

The following results, dealing with persistence, were motivated by the work done by
Hotbauer et al. (1987). We extend their work on permanence of a system to persistence
of a collection of a species.

We will use notation similar to that used in (Hofbauer et al, 1987). Their results
considered the dynamics on a compact absorbing set X, which we can take as the
union of A and {0}. Recall from Proposition 1 that X is positively invariant and
absorbing for R} 0. Here we use a function similar to our Lyapunov functions. Let,

n

. — Ci

‘/(zlagﬂz' : .,.’Iln) — H$1 ’
i=1

where for each 1 € 4 C {1,2,...,n}, ¢; > 0, and for i € {1,2,...,n}\4, ¢; = 0.
Using V', recall that

o~ {a: eR [ = o}.
€A

So Vi RY = Ry and V(z) =0 if and only if x € S%. Hofbauer et al used V,
where each ¢; > 0, to measure the growth of the system. We will employ our V in a
similar way but we will only keep track of part of the system.

In order to keep track of how parts of the system grow over the orbit, we define
a(m,z) = V(F™(x))/V(z), (12)
where m is a positive integer and x € X\S%. Further, define
n
o(x) = Z cidi(x) = Zcz- [7'4; - Z afij.rj]. (13)
i€ A icA j=1
Using (12) and (13), we have the following relationship:
a(l,x) = exp (¢(z)). (14)

Since ¢ is defined for all of R, (14) is a continuous extension of (12) to X where

m = 1. Also since a(m,z) =[]} a(1, F"(z)), it has a continuous extension to R".
Now we define

n=

Bla) = sup a(m, z). (15)
m>1
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To show persistence (or for Hofbauer et al. to show permanence), we would like to
argue that a(l,z) = V(F(x))/V(x) > 1 for all = in a neighborhood of 5%, but this
is not in general satisfied. So instead we show a weaker condition, that f3 () >1 on
S%. This implies that over some time we see an increase in the growth of the system.
This turns out to be sufficient for persistence.

We will use the following topological result which follows from Lemma 2.1 from
Hutson (1984). Note that our set X is a locally compact metric space which is
assumed in this lemma.

Lemma 9. (Hutson, 1984) Let U be open with compact closure, and suppose that V
is open and positively invariant, where U C 'V C X. Then if Ot (x)NU # 0 for

every © € V, OT(U) is compact and absorbing for V.

This result will help us show that the orbits of interior points stay away from the
boundary or part of the boundary. The next lemma is similar to that of Hofbauer et
al. (1987) except in one important respect. Hofbauer considered the set .S = XNORZ .
This is the set for which the orbit could limit on and not give permanence. For the
following, we are interested only in part of the boundary, namely S7%, which allows
us to show that some of the species persist.

Lemma 10. Let K C X be compact, and suppose that S(z) > 1 for every x €
%N X. Then there is a closed neighborhood W of S NX in R} such that if for
some ¥y € X we have w(y) C W, then B(y) = +o0, and y € S%.

The proof is similar to that of Hofbauer et al. (1987).

Next is the first of the main persistence extensions. Hofbauer et al. (1987) showed
that if

Blz) > 1.

where each ¢; > 0 and = € S = X NORY, the system exhibits permanence. We
show species i persists if f(z) > 1 on S = {x € R} |z; = 0}. In the following, we
consider the case where several species persist and include the proof which is similar
to that of Hofbauer et al.

Proposition 3. Consider the dissipative system (1). If f(x) > 1 for each = €
X NSy, then species 1,2,...,1 persist.

Proof. Let K =57 ,NnX,so0 f(x)>1 for each z € K. Using Lemma 10, we have
a closed neighborhood W of S ;N X such that if for some y € X and w(y) C W,
then y € ST, _

Let N = X\W. For each z € X\S? ;, Lemma 10 gives w(z) NN # 0, otherwise
the lemma gives = € S7*_,, which is a contradiction.

Now let V = X\K, and U = X\N, using the relative topology UcCVcX,
and for each & € V, OF(x) NU # 0. This implies from Lemma 9 that OT(U) is a
compact, forward absorbing set. Thus species 1,2,...,l persist. [ |
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Hofbauer et al. showed that instead of checking § at every point in S, it is
sufficient to check it at all the equilibrium points in S. We have a similar condition
where it is only necessary to show that A(z*) > 1 where z* is an equilibriuin
point in S4 where A is the collection of species whose persistence one wants to
demonstrate. To do this, we use an averaging property of our system. We denote
by Z(m) = (Z1(m),Zz(m),...,Z,(m)) the average population distribution after m
generations, where

m—1

Zi(m) = % 3 R x).

k=0

This allows us to rewrite (12) to be

a(m,z) = exp (m ¢(z(m))) . (16)

The following is a useful lemma that relates average populations and equilibrium
points.

Lemma 11. (Hofbauer et al., 1987) Assume that z; > 0 (1 <i < gq). Suppose
that there are real numbers b > 0 and b, and a sequence (k;) — oo such that
b < Fikj(m) < b for 1 <i<gq and j > 1. Then there is a subsequence, again
denoted by (k;), and an equilibrium point x* such that

J—r0
Now we extend their permanence result, which only involves checking the equili-
brium points on the boundary. This next result gives persistence of species 1,2,...,1
if ¢ evaluated at each equilibrium point in ST's. .y is positive.

Proposition 4. Suppose that there evists an | € {1,2,...,n} such that for all 1 <
i <1 there exist real numbers ¢y, ca,...,¢; >0 such that

! n

dz*) = Z Ci (ri — Z aijwj) >0
j=1

i=1

o,

for each equilibrium point x* in the subspace ST ,. Then for 1 < i <1 species
PETSists.

Proof. We will prove this by induction. First note that Sty ={z e Ry| [licami=
0} = UL_, 57, where each S™ is a face of ORY . Assume that ¢(z*) = E,i.:l ci(ry —
3 j=1 @ijz}) > 0 for each equilibrium point z* € ST.,- Now using (15) and (16), we
get A(x*) > 1 for each z* ¢ Sy

The induction will be done on the dimension of the boundary where the
0-dimensional space is §° = N2, S = {0}, and in general the k-dimensional space is
S* = Uier Njex. S7, where the Els are the (n — k)-clement subsets of {1,2,...,n}
and are indexed by I. Note that the origin is a repelling fixed point for our model
so f(0) > 1. Now suppose for some 2 < m < [ — 1, B(z) > 1 for all € S™. Let
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x € S™TIN\S™. We want to show that S(x) > 1. Using the invariance of each &,
w(z) C 8™ or w(x) NS™H\S™ £ 0.

If w(xz) C 8™, then using Lemma 10 with K = S™ NS}, we get f(z) > 1.
On the other hand, if w(z) N S™H\S™ # 0, let =’ € S"™TN\S™ and {k;} be
a sequence with lim;_ . Fki(x) = z'. Now using Lemma 11, we have that the
average & converges to an equilibrium point z*. But using (15) and (16), we again
get A(x) > 1. This completes the proof. B

Example 3. This completes our third goal to extend the result of Hotbauer et al.
We now use these to consider the following example. This is a competitive model
with three species of the following form:

z1(t + 1) 71 (£) exp(l — zy () — w2(t) — .5x3(t))
ot +1) | =1 2o(t)exp(l — .7Tzi(t) — L.322(t) — L.5z3(t)) | . (17)
z3(t+ 1) x3(t) exp(1 — 1721 (1) — B (t) — x3(t))

For this example we have

Pl

{.’B = (z1,%9,73) ER* |1 — 24 — 39 — B3 = O},
P? = {z = (21,20,73) ER" | 1 = .Twy = 1335 — L5235 = 0},
P = {:E = (zy,29,73) ER" |1 = 1.721 — By — 23 :0}.

Note that N2, P*NRE = 0, see Fig. 3. Since there is no equilibrium population

density, Theorem 3 gives weak extinction.

X,

3

Fig. 3. Relationship of P!, P% and P? in system (17).
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Next we can use Proposition 4 and check to see if we can show that any species
persists. If we choose

Ci

‘/(J"l:x’Z:aB) =z,

we see that using the conditions of Proposition 4, species 2 and 3 do not persist on
their own. But for species 1, we see that S} has only two equilibrium points, 22
and z°. Further since P! is above both 2? and 2%, using V(z1, 3, 73) = 25, (12),
and (15) we see that B(z?) and B(2%) are greater than one. Thus we have that
species 1 persists.

Now using this information, we see if there is a combination of species that persist.
So for this model, since we know species 1 persists, we can look at

V(z1, 29, 23) = 2703,

Using this, we see that species 1 and 3 cannot satisfy the conditions at z'2. Now
trying

V(J‘1 N :L‘g) = Zliill'gg,

we want to check the conditions on the equilibrium points in S3, which are z!, z2,
and z%. Note that P! is above 22 and 2z® and P2 is above z!. Since z! € P!
and z* € P?, for any choice of ¢1,¢; > 0, f evaluated at 2! or 2% would be greater
than one. At 2% though, P? is below and P! is above, so in order for 4 evaluated
at z* to be larger than one, we need ¢, > ¢y > 0. This will give 8 evaluated at all
the equilibrium points in S}, is greater than one at each equilibrium point in S,
Proposition 4 gives us that species 1 and 2 persist. But we have that the system
exhibits weak extinction, so species 3 must go extinct. ¢

This example, in fact, shows that not only can we deduce some species persist,
or go extinct but further we can actually determine the long term dynamics of (17).
We were able to determine that there was no attractor with each species present,
species 1 and 2 persist, and we could conclude that species 3 had to go extinct. So
for small 7;’s, and thus simple dynamics, we would expect, the system to converge
to z!2. Otherwise, it would converge to some more complicated attractor in the plane
Ty = 0.

From another perspective, this example shows that if one can deduce that all but
one species persist in a system exhibiting weak extinction, the remaining species must
go extinct. So extinction occurred even though in the original system we could not
have applied Theorem 6. Using the other theorems of persistence and weak extinction
allowed us to show that extinction was actually occurring. Thus we have the following,
immediate result.

Theorem 7. Suppose system (1) exhibits weak extinction and species 1,2,...,n—1
persist. Then species n goes extinct.
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6. Extensions

In this section, we have reached our final goal which is to extend these results to
submodels of a full model. Suppose we know or can determine by some means that
one or more species are going extinct. In this situation, we can extend Theorem 6 and
Proposition 4 to the subsystem by neglecting the species that are going extinct. We
are able to apply these tools on these subsystems and still conclude what will happen
on the whole system.

We first prove this useful proposition which relates a Lyapunov function with
respect to a subsystem with that to the entire system. This allows us to look at the
- smaller system, which we are limiting on, and determine what will happen on the
entire system.

Proposition 5. In system (1) suppose species | + 1,1+ 2,...,n are going extinct.
Let V R} = Ry bedefined by V(w1,22,...,70) = Hi:l it If H:'.:l Ai(x) <1

on B, x {0} x -+ x {0}\0, then V is eventually Lyapunov with respect to RY.

Proof. Let q e]ﬁ{fﬁ Using Proposition 1, let X be the region between and including
the planes Ppax and Pui, in R}. We have w(q) C &, and there exists an my =
mo(q) so that F™(q) € X for m > my. Let f(z) = V(F(z))/V () = [[.uy A (z).
Note that f has a continuous extension to R} . Since & is compact and does not
contain 0, X' = X NR, x {0} x --- x {0} is also compact.

By hypothesis, for all £ € X', f(z) < 1. Since X is the region between two
planes, given 6 > 0 there is an € > 0 such that X NR, x [0,¢] x --- x [0, €] is within
the d-neighborhood of X’. By the continuity of f and the compactness of X’, there
exists € > 0 so that if z € Y NR, x [0,€] x --- x [0,¢], then f(z) < 1.

Since the species [ + 1,1 +2,...,n are going extinct, for every € > 0 there is a
my > 0 such that if m > mq,

b F"!n .
iE{lI-}{lf]fi’n}' (@) <e

Let m* = max{mq,m, }. Then for m > m*, we have F™(q) € X NR, x [0,¢] x -+ x

[0,€] so fF(F™(q)) < 1. This shows V is eventually Lyapunov with respect to ﬂ?{ﬁ
]

Next we extend Proposition 4 assuming we have one or more species going extinct.
It is important to note that our set S is no longer a face of X. Instead S is now
going to be the boundary of a face. So in order to make this clear we will add a
superscript to denote what dimensional space we are studying. For example, S! is
the boundary of an [-dimensional space where z; = 0.

Lemma 12. Let 84 = {z € R, |[];c42: = 0} and suppose the species | + 1,
I+2,...,n are going extinct. Also assume that there erist positive real numbers
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¢; >0 for i€ AC{1,2,...,1} such that for all equilibriums points z* in S4Y N X,

¢($*) = Zci (”'i — i aqijL';> > 0.
j=1

i€A
Then species © persist for each i € A.
Proof. Using a similar argument as in the proof of Proposition 4, we get that if

¢(x*) > 0 for all equilibrium points «* € S4, then B(z) > 1 for all z € S, N X.
Note that for each «* € S4 N X, z7 =0 for each i =1+1,1+2,...,n. This gives

(b(m*) = Z C; (7'1' - i Oéz‘jl‘;) > 0.
=1

i€A
Further, let ¢; =0 for 4 € {1,2,...,n}\A4. Then we have

n

qS(w*) — Zci (r,; - iael]m;) > 0.
j=1

=1

Using these ¢;’s we will consider the function ¥V : R} — R} to be

Viw) =
1=1

which we use to define o and f.

Next using the notation used in Lemma 10, let K = S4 N X, which is a compact
subset of R}. Lemma 10 gives a closed neighborhood W of K where, if for some
y € X we have w(y) C W, then y € S4,NX. Since W is closed, we can find a closed

cylindrical neighborhood W' C W that has radius § > 0. Let N = {X\S4}n f{)@fr
x[0,6/2) x - x [0,6/2) and let U = {X\W}NRL x[0,8/2) x --- x [0,6/2).

Note since species [+1,142,...,n go extinct for each z E]f@jf and for any 6 >0
there exists an M = M (z) such that for all m > M,

FFm < d/2.
egax | F @) <

So we have U C V, V is positively invariant, and O (x)NU # 0 for every z € V
by Lemma 10, we get from Lemma 9 that O*(U) is compact and absorbing for V.
Thus each species 7 persists for i € A. [ ]

This extends our persistence result so that we may look for species persisting
when we know that one or more species are going extinct. In fact, we can take
the above ‘global’ theorem and get a local theorem. This is done by replacing the
assumption that species 141,14 2,...,n are going extinct with the assumption that
there exists an initial population density = with w(zx) C ]Rﬂr where [ < n. This gives
a similar conclusion.
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Theorem 8. Suppose that species | + 1,1+ 2,...,n are going estinct, and on the
subspace ]RQ_ species 1 is weokly dominated by species 1,2,...,1—1. Then species [
goes extinct in R} .

Proof. Consider the subspace IRL. Using Corollary 3, there exists an A C {1,2,...,
I —1} such that thereis a ¢ = (c1,¢2,-..,¢) with ¢ > 0, and ¢; > 0 for i € A with

X)) [[ A @) <1

ieA
on IRQ_\O. Now using Proposition 5, we obtain a function V(z1,z2,...,2,) =
w [Lieaz; on Ry, where A C {1,2,...,1} such that V is eventually Lyapu-
nov with respect to R’ ,. Using Lemma 1, we have species | goes extinct. |

7. Conclusions

For a system of difference equations of Lotka-Volterra type, we have constructed tools
that one can use to determine the long term bhehavior of the system. This is the goal of
many biologists since knowing the long-term behavior can answer questions whether
a species goes extinct or persists. We have found sufficient conditions for a group of
species to drive another to extinction. We proved that if a group weakly dominates
another species, then that species will be driven to extinction.

Our persistence results were modeled after the permanence results of Hofbauer
et al. (1987). We were able to modify their results to get the persistence of one or
more species. They were able to show that the region, where one or more species are
extinct, was, on average, repelling. This is sufficient for permanence. We noticed that
one can apply the same techniques to just part of this region and get that some of
the species persist. This can be extremely useful information to the researcher.

The other main result deals with weak extinction. We think of weak extinction
as starting with each species present; it eventually appears that one or more species
are going extinct. This includes extinction of a species as well as dynamics such as
mutual exclusion where a species dies out, but which species may depend on what the
initial population density was. We showed that if there was no equilibrium population
density where every species was present, the system exhibited wealk extinction.

In addition to these results, we showed that the persistence and extinction results
were applicable to submodels where one or more species are known to be going extinct.
These are ideas similar to those presented in (Chan D.M. and Franke, 1999). So if
one is able to determine that a few species will go extinct, the full model can be
reduced to the submodel which has the species going extinct removed. Now with
this submodel, our persistence and extinction theorems can be applied and still hold
for the full model. These extensions to submodels allow researchers to investigate
their model to much greater depths, and thus allow for a greater understanding of
the dynamics.

Tinally, we examined a system in which a species goes extinct without any type
of weak dominance. This was shown using the persistence and the weak extinction
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results. So applying each of the tools to a model, one can deduce the dynamics of the
system beyond what each tool itself is capable of describing.
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