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SEMI-ANALYTICAL SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS

KRrzYSzZTOF GOZDZIEWSKI*, ANDRZEJ J. MACIEJEWSKI*

We describe the method that allows, in many cases, to solve effectively a wide
class of ordinary differential equations describing a mechanical system. The
method is based upon the idea of normalization procedure. We present its
implementation and some examples of its applications.

1. Introduction

There are two general directions in the study of dynamic systems—analytical and
numerical. The latter is used when the system is too complicated for analytical tools
or when there are no appropriate methods available. It should also be mentioned
that even in very simple systems we can encounter problems which cannot be solved
analytically. On the other hand, some analytical methods are difficult in realization
and in practice they can be applied only as algorithms of sophisticated. computer
algebra systems.

In this paper we discuss systems whose dynamics can be described by means
of a set of ordinary differential equations and, more precisely, by the Hamilton’s
equations of motion. This limitation is not too restrictive. Firstly, every system
of ordinary differential equations can be transformed into the Hamiltonian one
(via doubling the number of variables). Secondly, the method which we apply for
the Hamiltonian system has its version for general systems of ordinary differential
equations.

The main idea is very simple. Instead of direct integration, we change variables
in order to simplify equations of motion. This method will be constructive if we
know in advance how to change variables. In many cases it is possible to select a
class of ‘acceptable’ changes of variables in such a way that the obtained simplified
system is explicitely solvable.

The idea described here is applied in many versions of perturbations method
and is frequently used in many branches of applied mathematics. However, its
application in pure analytical form is difficult. In practice, changes of variables are
presented as infinite series of specific functions. A few such changes lead to very
complicated expressions and even performing calculations with the help of general
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purposes computer algebra system (REDU@E, MACSYMA, MATHEMATICA)
does not help much because of memory limitations. It is especially true in the case
of IBM PC compatible computers. ;

Thus, it seems to be reasonable to make some restrictions. First, we should
select a class of problems we want to solve, and next find an effective way of imple-
mentation of the method described above. It is important to notice that in many
cases explicit analytic formulae for variables’ changes are not necessary. Thus, we
should know how to perform these transformations with the help of an appropriate
procedure. In other words, coefficients of series can be given numerically.

We present here a computer realization of the concept. We chose for the study
a neighborhood of an equilibrium in a Hamiltonian system. The reason for this is
twofold. The adequate theory is most complete and relatively simple for this kind
of problem (c.f. the paper of Bruno, 1988).

The approach presented here can be generalized for any invariant of the system,
e.g. periodic orbits, invariant tori (Bruno, 1989).

In this paper we demonstrate that our method gives approximately general
solutions of equations of motion in the neighborhood of an equilibrium (with pre-
scribed accuracy). Thus, for initial conditions that lie in the neighborhood, we
have analytic expressions with numerical coefficients which represent the solution
of the initial value problem. We also present applications of our method for finding
different classes of solutions.

2. Theory

This section gives a short overview of the theory implemented in our software
system LIE (GoZdziewski and Maciejewski, 1990). We deal with an autonomous
Hamiltonian system with N degrees of freedom. As it is well known, such a
system is given if we know its Hamiltonian function:

H = H(z),
where:
= (QI,H-;QN,PI,---)PN)
denotes standard canonical coordinates. We also introduce the following matrix:
I— Oy En ,
—ENy Oy

where On,En are N xN zero and unit matrices, respectively. Hamilton’s
equations of motion can be written in the following form:
OH

:i::I—a-;‘. (1)
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We assume that z° is an equilibrium point for these equations, i.e.:

OH , o _
35 (@) =0 (2)

Without any loss of generality we can assume that 20 = 0. If it is not the case,
we can make the canonical transformation:

z=z+z°
moving the equilibrium point to zero.

Assuming that H is the analytical function in the neighborhood of zero we
can represent it as the power series:

H= iH; . )

=2

where H; are homogeneous polynomials of order [ with respect to the z

components:
H = Z hkazk,
k)=t

where:
2N 4
def def k def k
k= (kl,...,ng), |k| = E ki, xF =zt
ey

The right hand sides of Hamilton’s equations of motion are determined by
one function, namely by the Hamiltonian H. Thus, a simplyfying of them is
equivalent to a simplification of the function H. We also want to preserve the
Hamiltonian character of the system during every step of the simplification. This
requirement restricts a class of simplificating transformations to the canonical ones.
The procedure that simplifies a Hamiltonian function is called normalization and
it can be presented schematically as follows:

Original problem | Canonical map | Normalized problem

i=15'; z = z(y) y=I—

In the above table H = H(z(y)) is the Hamiltonian function expressed in the
new variables.

The normalization is divided into two major stages. Since the procedure de-
pends strongly on the form of the H, term in (3), at first we should simplifyft as '
much as possible. This can by obtained by the application of the linear canonical
transformation of variables
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LINEAR NORMALIZATION

INPUT MAP OUTPUT
(=] ~ N ~
H= ZH{, H= EH'.’
1=2 z= Ay
1 T T ad
Hy = 3% Hz H, = E/\kykyk+N

k=1

In the above table Ax, k¥ =1,..., N denote eigenvalues of the matrix A =IH
(it is the coefficients matrix of the linearized system). We also assumed that this
matrix is diagonalisable. The new coordinates y are generally complex.

After the linear normalization one has to simplify the terms H; with k& > 2.
The method of non-linear normalization is based on Lie series transformation and
in our settings is purely algebraic. The main advantage of it is that for finding
appropriate canonical transformation we need to find coeflicients of one function
of canonical variables. This function is called the generating Hamiltonian and is
denoted by T in the table below.

NONLINEAR NORMALIZATION

INPUT MAP OUTPUT
H:ZH,‘, m:I—a—q-: FI:ZI};,
i=2 o= i=2
N y ==(0) N .
Hy = ;AkmkI)H.N z = exp(DT)y 2= ;Akykyk+N

In this table Dy denotes differential operator:

Drf={f,T},
where {-,-} is the Poisson bracket.

The normalization procedure is performed step by step i.e., the normaliza-
tion of terms Hp does not change the terms H; with i < k. If we stop the
normalization at the terms of order M we can write:

-~ M -~ el
'H= E H; + H| U,
1=2
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where Hy denotes all unsimplified terms. If we neglect these terms, then in
a generic case, the system with a Hamiltonian obtained in this way is integrable
or simpler for investigations than the original one. The form of the normalized
Hamiltonian depends on the so called resonance relations between values of A;,
i=1,...N.

The overview of normalization algorithms which we have developed is de-
scribed in (Maciejewski and Gozdziewski, 1991). We also discussed some aspects
of the practical realization of the algorithms, as well as some of their applica-
tions (GozZdziewski and Maciejewski, 1990). The reader can find the full and com-
pact theoretical background in the paper of Bruno (1988). An interesting intro-
duction to the subject is given by Grebiennikov (1986) and Holshevnikov (1985).

The paper of Mersman (1970) describes a very efficient and useful algorithm of Lie
series transformation.

3. Examples

In order to illustrate the possible applications of the normalization procedure we
chose a real, very simple mechanical model: the double pendulum (see Figure 1).
The Hamiltonian function of the model is:

H(q1,q2,p1,p2) = —cosqu +1 (M —1) cosqy (4)

12 (1= M) pi® + ps® — 21 (1= M) p1 p3 cos(q1 — ¢3)
PQ1-M)(Q1+M+(M-1)cos2 (q1— q2))

4 ’1‘:1

Fig.1. The double pendulum.
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It has two parameters: [ and M. The physical units are chosen in such a way
that the sum of two masses equals to 1; the length of the pendulum of mass M
and the gravitational constant are equal 1; the length of the second pendulum is

l
The Hamiltonian system (4) has four equilibrium points:

W=@p=p=p=0 (%)
n=q@p=rp=p=0 (6)
Q=7 @=p1=p2=0 4 (7

=0, p=mp=p=0 (8)

Equilibrium (5) is of the center—center type (the matrix of linerized equations of
motions has two pairs of imaginary eigenvalues), fixed point (6) is of the saddle-
saddle type (the matrix has two pairs of real eigenvalues). The last two equili-
bria (7) and (8) are of center—focus type (the matrix of linearized system has one
pair of real and one pair of imaginary eigenvalues).

In the neighborhood of all these equilibria the normalization of the Hamilto-
nian (3) was performed. We investigated the system for non resonant values of
parameters. After the linear and nonlinear normalization up to the order of 2M,
the normalized part of the original system (4) has the following form:

M
A=) Hy Hy=) hp" (9)
i=1 Inl=i
where n denotes now a N-multi-index,
p=(urvy,..., uNvN),
and
z2=(uy,...,uN,v1,...0N)

are normal, complex canonical coordinates. Note that the Hamiltonian (9) depends
only on N variables, namely products pp = urvg, k =1,...,N. Equations of
motion written in normal variables

due _9H(p)  du _ 0H(p)

& - ouw @ ow . LN (10)
are easily integrable:
up = upexp[Qi(p°) (t —1to)], (11)
ve = vgpexp[~Q(p°)(t —to)] (12)
with  Q(p) = _(2_H_(p_)_, k=1,...,N

0 px
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where a variable with the index ‘0’ denotes its values at the time t = t3. The

Cartesian normal variables z can be transformed into the complex ‘action-angle’
variables (Bruno, 1988):

1
Pk = UV, ¢k -2—(lnuk -—lnvk) k= 1,...,N (13)
Variables ¢ are cyclic; thus, pr for k = 1,..., N are integrals of motion and
solution (11) can be written as:
=p® =const., ¢=-Rt—-1t)+¢°, N= —-——(p ) (14)

The normalization procedure diverges in many cases, neverthless the solutions ob-
tained approximate exact ones very well in a finite period of time. Neglected terms
Hy are also the source of errors. Tests show that the order of these errors is hi-
gher than the order of the last normalized term. Thus, the accuracy needed during
computations can be achieved by choosing a high enough order of normalization.
It should also be noted that solution (14) gives good approximation of this part of
exact solution that lies in a close neighbourhood of the equilibrium, i.e. when the
norm of p is small. For prescribed accuracy one can easily determine the maximal
allowed values of the p norm.

3.1. Quasi—Periodic Solutions

In a close vicinity of the stable equilibrium one can find quasi-periodic solutions.
For the normalized Hamiltonian, when the equilibrium is stable, every solution (14)
with p # 0 is quasi-periodic. Figure 2 shows the comparison of the numerical
integration of the original equations of motion with results derived from (14). The
next figure shows differences between these solutions. Let us note that, although the
solution lies in the relatively large neighbourhood of the equilibrium, the precission
of our method is very good.

3.2. Periodic Solutions

In the neighbourhood of the center—center or the focus—center equilibrium one can
prove the existence of families of periodic solutions. We illustrate how to find them
for the case of stable equilibrium (5). The basis here is once again, the normal
form (9) and explicit transformation between the original and the normal variables
which is described by the generating Hamiltonian. In our case system (9) has two
degrees of freedom. From general solution (14) we can determine periodic solutions
as those fulfilling the condition:

D) _n
o e (15)
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0.4
Parameters
qz 0 N
0.2
0.0 4
-0.2 4
-+ gemi-—analytical theory
©O00CO numerical integration
-0.4 T
-0.25 0.00 q, 025

Fig. 2. Quasi periodic solutions on the (g1,¢2) plane. Initial condition for normal
variables was chosen as: p§ = pJ = 0.01, ¢ = ¢ = 0. It corresponds
to the following initial condition for the orginal variables: ¢; ~ —0.093...,

g2 >~ 0.177..., p1 ~ 0.156..., p2 ~ 0.048.... The normalization was’
performed up to the 9-th degree.

2.5E~004

A

== Q1 int~ Q1 the
™ Q2 int~ Y2 the
=4 Dy int~P1 the
T Pz int™ Pz the
-2.5E-004 : . . T
0.0 5.0 10.0 15.0 20.0 t 25.0

Fig. 3. Differences between numerical and semi-analytical integration for the orbit
shown in the previous figure.



Semi—-analytical solutions of ordinary ... 245

where n and m are relative prime integers. We can look for periodic solutions
by finding zeros of the function

F(p1,p2) = mQu(p1, p2) — nQa2(p1, p2) (16)

in the neighborhood of the equilibrium position. The search area has to be limited
by prescribed accuracy of the transformation between the original and the normal
variables. The general solution of (16) (for fixed n,m) forms a curve on the two
dimensional plane (p1, p2). Coordinates of every point of this curve, transformed
into the original variables give an initial condition of periodic solution (15). The
curve represents a family of periodic solutions. Solutions of the family have the
same period

m 27 27
= —_— N,
22| |€2]

Figure 4 shows an example of application of the algorithm.

T

3.3. Asymptotic Solutions

The starting point for finding solutions asymptotic to unstable equilibrium (6)
are equations (11). In the neighborhood of the equilibrium the solutions can be
explicitly classified. They form two manifolds. Without any loss of generality we
can assume that Re(2;) >0, k=1,..., N. Setting now

u) #0, v =0, k=1,...,N

we define the set of trajectories tending to the equilibrium as ¢ — —co. It is the
unstable manifold of asymptotic solutions. The stable manifold is determined by

u) =0, vd#£0, k=1,...,N

and it is formed by orbits approaching the fixed point as ¢ — co. As we can assume
that after normalization the transformation between normal and original variables
is known, the initial conditions of the asymptotic solutions can be obtained in the
original variables. By integrating numerically equations of motion of the original
system, we can now investigate the global structure of asymptotic manifolds. A
well-known Poincaré cross—section is a very useful tool for this purpose. In the case
of two degrees of freedom (as in our example) it has a simple geometrical meaning.
The phase space is four-dimensional. The manifold of a fixed energy is three-
dimensional. Solutions asymptotic to the equilibrium have the same total energy.
Now, instead of considering a whole orbit in the phase space we can consider
the sequence of points obtained by intersection of the orbit with a suitable two
dimensional submanifold (surface of section). By applying the special algorithm,
we are able to reconstruct globally intersections of asymptotic manifolds with the
surface of section (Maciejewski and Gozdziewski, 1992). Generally, they form a

collection of smooth pieces of an extremely sophisticated curve on the cross-section
plane.
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0.03
o
0.00 -
0.02 +
~0.25
0.01
o

Im( p2)

Im(p;) n/m = 3/2 q:

0 -0.50
%00 oo1 0.02 -0.20 -0.10 0.00 0.10 0.20

Fig. 4. A family of periodic solutions with nonlinear frequencies ratio n/m = 3/2
for parameters ! = 1.1, M = 0.85 (on the left), shown on the plane (g, p2).
The second plot shows one of the periodic solutions of the family — results
of numerical integration (open circles) are compared with semi-analytical
computation of the orbit (small dots). The orbit computed covers the time
span of one period. Notice the range of angular variables!

This reconstruction can give a very important result in the case of a Hamil-
tonian system with two degrees of freedom, which has an equilibrium of saddle-
focus or saddle-saddle type. If we find that the stable and unstable manifolds
intersect transversely, we can proof numerically the nonintegrability of the system
investigated. This statement has solid theoretical background in the theorems of
Devaney (1976) and Bolotin (1990). Figure 5 shows the intersection of asympto-
tic manifolds with the cross—section plane ¢; = # (the parameters are taken as
l = 2,M = 0.7, the origin of angular coordinates is in the saddle-saddle equili-
brium (6)). As it can be seen, they intersect transversely. The next figure shows
orbit whose initial conditions are determined by a point denoted as X. This orbit
has a special feature—it is double asymptotic (homoclinic). With the time tending
to infinity, as well as to minus infinity, the trajectory tends to the equilibrium. The
existence of such an orbit in our system suggests that it is nonintegrable. To finish
the proof we should check whether some additional assumptions of the theorem of
Bolotin are fulfilled (1990). We do not present them here. More details can be
found in our paper (Maciejewski and GozZdziewski, 1992).
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Fig. 6. Orbit homoclinic to unstable equilibrium (2). The coordinates’ origin is in
the equilibrium (the coordinates are taken mod 2x). Initial conditions of

the orbit are denoted X in the previous figure.
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3.4. Nonlinear Stability of Equilibria

In the case of a Hamiltonian system with two degrees of freedom normalization can
be used as a tool for determining nonlinear stability of an equilibrium with purely
imaginary eigenvalues. If the Hamiltonian is positively (or negatively) defined,
then Liapunov’s direct method cannot be applied. Instead, we can use a famous
theorem of Arnold and Moser (see e.g. Meyer and Schmidt, 1986). Assuming the
lack of resonances up to the order of 2M we can present the Hamiltonian in terms
- of the real action-angle variables (p1, p, ¢1, ¢2)

H=Hy+Hs+...

where Hjk(p1,p2) are homogenous polynomials of degree k in p; and p,
Hjz = w1p1 — wyps. The equilibrium is stable if for some &

D2k = ﬁzk(wg,wl) 79 0

The theorem gives a constructive a)gorithm for investigating the stability. We im-
plemented it in the system LIE (Gozdziewski and Maciejewski, 1990). To illustrate
the above, we show here the answer given by LIE, when asked if equilibrium (5)
is stable for the parameters { = 1, M = 0.5 (the example demonstrates only the
result of calculations, obviously the Hamiltonian is positively defined):

ol = 1.84776
02 = 0.76537
D2 = 2,828 + I 3.16E-16
D4 =-1.813 + I 7.82E-16
Dé = 7.769 + I 5.87E-16

Here 01,02 denote frequencies of the linearized system, D2, D4, D6 are the deter-
minants defined above for ¥ = 1,2,3 and I is the imaginary unit. We used the
method to solve a much more sophisticated real problem (Gozdziewski, Maciejewski
and Niedzielska, 1991).

4. Remarks
It should be emphasized that:

1. The method described seems to be rather complicated in comparison with
a direct numerical integration of equations of motion. It gives however the
general solution of an initial value problem—for arbitrary initial conditions
taken from a close neighborhood of an equilibrium our method gives the
analytical formula with numerical coefficients that represents this solution.
Thus, we can investigate general classes of specific solutions (as we have
demonstrated in the examples). The accuracy of the solution depends on the
maximal order of normalization procedure applied and the distance of the
chosen initial condition from the equilibrium.
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2. The method is general. It can be applied for an arbitrary system of ordinary
differential equations satisfying the restrictions described above.

3. The process of normalization is time consuming (especially in the case of high
maximal order of normalization). However, for a given system this step has
to be performed only once and additional calculations needed for finding the
specific solutions are very fast.

The universality of the method could be find interesting for solving different kinds
of problems in applied sciences.
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