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A FIXED POINT METHOD IN QUASISTATIC
RATE-TYPE VISCOPLASTICITY

SEDDIK DJABI*, MIRCEA SOFONEA™*

Two initial and boundary value problems describing the quasistatic evolu-
tion of semilinear rate-type viscoplastic models with/without internal state
variables are considered. The existence and uniqueness of the solution is pro-
ved using only classical existence and uniqueness results for linear elasticity
followed by a fixed point technique.

1. Introduction

Let ©Q be a bounded domain in IRN(N = 1,2,3) with a smooth boundary
00 =T andlet I'; be an open subset of I' such that meas I'y > 0. We denote
by I'; =T —T4, v the outward unit normal vector on I' and by Sy the set of
second order symmetric tensors on IRM. Let T be a real positive constant. We
consider the following mixed problem:

& = Ee(it) + F(0,e(w)) in Qx(0,T) (1)
Dive+f=0 in Qx(0,T) @)
u=g on I'yx(0,T) (3)
ov=h on Tyx(0,T) | (4)
u(0) = o, o(0)=0o in Q (5)

in which the unknowns are the functions u : @ x [0,7] = R" and ¢ :Qx[0,T] —
Sy (for simplicity, in (1)-(5) the independent variables z € Q and t € [0,T]
were suppressed). '

This problem represents a quasistatic problem for rate-type viscoplastic mo-
dels of the form (1) in which o is the stress function, u is the displacement func-
tion and €(u) : @ x [0,T] — S is the small strain tensor (i.e &(u) = 1(Vu+Viu)).
In (1) £ and F are given constitutive functions which may depend on z € Q
and, as well as everywhere in this paper, the dot above a quantity represents the
derivate with respect to the time variable of that quantity. In (2) Div o represents
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the Divergence of vector-valued function o and f is the given body force; the
functions g and h in (3),(4) are the given boundary data and finally the functions
ug, o9 in (5) are the initial data.

Viscoplastic models of the form (1) are used in order to model the behaviour
of real bodies like rubbers, metals, rocks and so on, for which the plastic rate of
deformation depends on a full coupling in stress and strain. Various results and
mechanical interpretations concerning models of the form (1) may be found for
instance in the work of Cristescu and Suliciu (1982). In the case when F depends
only on o, existence and uniqueness results for the problem of form (1)-(5) were
obtained by Duvaut and Lions (1972), Suquet (1981a; 1981b), Djaoua and Suquet
(1984). In the case when a full coupling in stress and strain is involved in F', the
existence of the solution (u,o) of the problem (1)—(5) was obtained by Ionescu -
and Sofonea (1988) using Cauchy-Lipchitz arguments.

Let M be a natural number; we also consider the following mixed problem:

& = Ee(it) + F(o,e(u),x) in Qx(0,T) | (6)
k= p(o,e(u),) in Qx(0,T) (7)
Divo+f=0 in Qx(0,T) o | (8)
wu=g on Iyix(0,T) ~ ©)
ov=h on Tyx(0,T) | (10)
w0) =uo , o(0) =00 , K(0)=rKe in - (11)

in which the unknowns are the functions u:Qx[0,7] - RY, 0 :Qx[0,7] — Sy

and & :Qx[0,T] — IRM (for simplicity, as in the case of the problem (1)- (5), in
(6)—(11) the independent variables z € @ and ¢t € [0,T] were suppressed).

This problem represents a quasistatic problem for rate-type viscoplastic models of
the form (6), (7) in which & may be interpreted as an internal state variable and
&, F, ¢ are given constitutive functions. In (6)-(11) we used similar notations as
in the problem (1)~(5): u represents the displacement function, o represents the
stress function, ¢(u) denotes the small strain tensor, f is the given body force,
g and h are the given boundary data and finally ug, 0g, ko are the initial data.

Viscoplastic models of the form (6), (7) are used in order to model the beha-
viour of real bodies for which the plastic rate of deformation depends also on an
-internal state variable. Some of the internal state variables considered by many
authors are the plastic strain, a number of tensor variables that takes into account
the spatial display of dislocations or the work-hardening of the material. A major
and still remaining open problem in viscoplasticity concerns the way of establishing
the evolution equation for the internal state variables. Here we suppose that x is
a vector-valued function which satisfies (7) where ¢ is a given function.
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Concrete examples of viscoplastic models -of the form (6), (7) were proposed
by Cristescu (1987) for rock-like materials and, for more details in the field, we
refer for instance to the book of Cristescu and Suliciu (1982).

Existence and uniqueness results in the study of elastic—viscoplastic materials
with internal state variables for different forms of F and ¢ were given by
Kratochvil and Necas (1973), John (1974), Laborde (1979), in the case when F
does not depend on €. An existence result concerning the problem (6)—(11) was
obtained by Sofonea (1989) using again Cauchy—Lipschitz arguments in a product
Hilbert space.

The aim of this paper is to give two new demonstrations for the existence
results obtained by Ionescu and Sofonea (1988), Sofonea (1989) in the study of the
problem (1)-(5) and respectively in the study of the problem (6)—(11). These de- -
monstrations are based only on classical existence and uniqueness results for linear
elasticity followed by a fixed point technique. The paper is structured as follows:
section 2 contains the basic notations and some preliminaries on the functional
spaces used in the following, section 3 contains the proof of the existence result
concerning the problem (1)—(5) (theorem 3.1) and finally section 4 contains the
proof of the existence result concerning the problem (6)-(11) (theorem 4.1).

2. Notations and Preliminaries

We denote by ”.” the inner product on the spaces IR, IRM and Sy and by
|-| the Euclidean norms on these spaces. The following notations are also used:
H={v=(v)|vuel?),i=1,N}

LN}

Hi={v=(w)|veH\ Q)i
H={r=(n)|nj=7:€L*Q), i,j=1N}
Hy={r=(n)|DivreH}

Y ={k=(x)| i €LXQ), i=T,7}

The spaces H, H;, H, H; and Y are real Hilbert spaces endowed with
the canonical inner products denoted by <-,->g, < -, ->n,, <, >x, <-,->x,
and <-,->y respectively.

Let Hy = [H%(I‘)]N and v : H; — Hr be a trace map. We denote by
V={uveH |yu=0 onl;}
and let E be the subspace of Hr defined by
E=~vV)={€é€Hr|£=0 onIy}.
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The deformation operator ¢: H; — H defined by:
1
e(u) = §(Vu + Viu)
is a linear and continuous operator. Morever, since meas I'y > 0, Korn’s inequality
holds:
le(v)l# > Clvlg, forall veV (12)

where C is a strictly positive constant which depends only on © and T';. Let
HY = [H=%()]Y be the strong dual of the space Hr and let <-,-> denote the
duality between Hp. and Hr. If 7 € H; there exists an element 4,7 € Hf such
that:

<Y, T, yv>=<7,e(v)>y + <Div r,v>yg forall ve H (13)

By 7v|r, we shall understand the element of E’ (the strong dual of E) that
is the restriction of v,7 on E.

Let us now denote by V the following subspace of H;:
V={r€H;| Divr=0in Q, rv=0 on Iy}

Using (13) it may be proved that &(V) is the orthogonal complement of V
in H, hence

<1, e(v)>x=0, forall veV, r€V (14)

Finally, for every real Hilbert space X we denote by |-|x the norm on X
and by C¥(0,T,X)(j = 0,1) the spaces defined as follows:

C°0,7,X) = {z:[0,T] = X | z is continuous }
CY0,T,X) = {z:[0,T] — X | there exists # the derivate of z
and 7 € C°%0,T, X) }

In a similar way the spaces C°(R4,X) and C!(IR4,X), where R, =
[0,40), can be defined.

Let as recall that C7(0,7,X) are real Banach spaces endowed with the norms

lzlo,7,x = tIEI[I%IIZ(i)Ix (15)
and

lzli,7,x = |zlor.x + |2lo,7.x ,
respectively.

3. The First Existence and Uniqueness Result

In the study of the problem (1)-(5), we consider the following assumptions (see
also Ionescu and Sofonea (1988)): '
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( £:QxSy — Sy is a symmetric and positive definite tensor, i.e. :
(a) Ejen € L°(Q) for all 4,5,k h,=T,N (16)
(b) o -T=0-E7 VYo,7 € Sn,ae. Ind
L (c) there exists >0 such that £o-0>alo|? forall o€ Sy
( F:QxSyxSy — Sy and
(2) there exists L> 0 such that
|F(z,01,€1) — F(z,02,€2)| < L(lo1 — 02| + |1 — )
) for all ¢4,09,61,€2 € Sn, a.e.in (17
(b) £ — F(z,0,¢) is a measurable function in the
Lebesgue sense, for all 0,6 € Sy
{ (c) z — F(=z,0,0) e H
f€CY0,T,H), g€C 0,T,Hr), heC0,T,E (18)
uo € Hy, 00 €My | (19)
Div oo+ f(0) =0 in , uo=g(0) on 1, ogov=~h(0) on T (20)

Remark 3.1. Using (16) and (17) we obtain that for all ¢ € H, o € H the
functions z — £(z)e(z) € H, = — F(z,0(z),&(x)) € H hence we may define the
operators £ : H — M, F : HxH — H by the equalities

(Ee(z) = (Eijen(2)e(T)), F(o,e)(z) = F(z,0(z),e(z)) ae.z€Qe€N, c€H

For simplicity, we use in the following the notations £ and F instead of € and
E, respectively.

The main result of this section is the following:

Theorem 3.1. Let (16)-(20) hold. Then there ezists a unique solution u €
CY(0,T,H,), o € C*(0,T,Hy) of the problem (1)—(5).

Proof. We start by the existence part. Let 7 € C°0,T,H) and let 2z, €
C*(0,T,H) be the function defined by:

t
z(t) = / n(s)ds +20  forall t €[0,T] (21)
0
where
Zg =09 — 86(11-()) (22)

Using standard arguments of linear elasticity, we obtain the existence and
uniqueness of two functions u, € C*(0,T, H1), oy € C'(0,T,H1) such that:



274 S. Djabi and M. Sofonea

oy = Ee(uy) +2, in Qx(0,T) " (23)
Divo, +f=0 in Qx(0,T) (24)
u, =g on I'yx(0,T) | (25)
o,v="h on Ty x(0,T) (26)

Morever, by (19), (20), (24)—(26), we have u,(0) —uo € V, 0,(0) — 00 €V
and by (21)-(23), it results:

07(0) — o0 = Ee(uy(0)) — E€(up) in Q
Using now (14), (16) and (12), it follows:
u,(0) = ug, 0y(0) =0y in Q 27)

Since by (17), we obtain that ¢ — F(oy(t),e(u,(t))) is a continuous function
on [0,7] with values in H, we can define the operator A : C°(0,T,H) —
C°(0,T,H) in the following way:

An(t) = F(o,(t),e(uq(t))) for all t € [0,T] (28)

We shall prove that A has a unique fixed point. Indeed, let ni,7m, €
C%(0,T, H); for simplicity we denote: 2z, =21 , 2zy, = 22, Uy, = U1, Uy, = Ug,
0y, = 01, Oy, = 02. Using (24)—(26), we have u; —us €V, g1 —02 €V and by
(23) it results

01— 03 =Ee(uy) — Ee(ua) + 21— 22 in Qx(0,T)
Using again (14), (16) and (12) it follows
lur(t) = ua(t)la, + lo1(t) — o2(t) i < Claa(t) — 22(t) |l forall t€[0,T] (29)
where C' > 0 depends only on Q, T, and €. Using now (28), (17), (29) and (21)

we get

[Am(t) — An2(t)|n < CL‘/O |m1(s) — m2(s)lnds forall ¢ E’[O,T] (30)

By recurrence, denoting by AP the powers of the operator A, (30) implies

t 3 q
Wom(e) = A< L [ [ [ im) = mldr . as
0 Jo 0
N
p integrals
for all ¢ €[0,7] and p € IN. Using (15) we obtain

CLT)y
p!

AP — APmlor e < ( |m — n2lo,r,r forall peNN (31)
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(CLT)
“pl

and since lim =0, (31) implies that for p large enough the operator

p—oo !
AP is a contraction in C°(0,T,H). Then, there exists a unique 7* € C°(0,T,H)
such that APn* = #*. Moreover, 7* is the unique fixed point of A. Using now
(21), (23)~(28) we obtain that u,. € C(0,T,H;), oy € CH0,T,H;) is the
solution of (1)—(5).

In order to prove the uniqueness part, let (u,,0,+) be the solution of (1)-
(5) obtained above and let (u,0) be another solution of (1)~(5) having the same
regularity, i.e v € C*(0,T, H,), o € C*(0,T,H,). We denote by n € C°%0,T,H)
the function defined by:

n(t) = F(o(t),e(u(t))) forall te[0,T] (32)

and let z, € C1(0,T,H) be defined by (21), (22). Since from (1)—(5) it results that
(u,0) satisfy (23)-(26) and this problem has a unique solution u, € CY(0,T, H),
o, € CY0,T,Hy) it results

U= Uy, 0 =0y (33)

Using now (28), (33) and (32) we get An =7 and by the uniqueness of the fixed
point of A it results: ‘

n=n" (34)
The uniqueness part of theorem 3.1 is now a consequence of (33), (34).

Remark 3.2. Problem (1)-(5) may also be considered in the case of the infinite
time interval (0,+0c0) instead of (0,7). In this case, if (16), (17), (19), (20) are
fullfiled and '

f € CI(IR+1H)’ g€ CI(IR+’HF)) he C?(]R+’EI)) (35)

problem (1)-(5) has a unique solution (u,0) having the regularity u €
Cl(IR+vH1)’ GGCI(IR+!H1)' '

Indeed, with minor adjustments, we consider the operator A : X — X given
by (28) where

X ={n€C'(Ry,H) | sup e n(t)lr < +o0 }
120
and k> 0. X is a Banach space for the norm
Inlx = sup e™*In(t)lx
>0
and by (30) we get

CL
A — Anzlx < —=|m —mlx forall m,m€X
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Taking now k > CL we get that A is a contraction on X. Further on the
same arguments as in the poof of theorem 4.1 can be used.

4. The Second Existence and Uniqueness Result

In the study of the problem (6)—(11), we consider the following assumptions (see
also Sofonea (1989)):

( F:QxSyxSyxIRM - Sy and

(a) there exists L> 0 such that |F(z,01,¢€1,K1) — F(z, 09,62, K2)| <
< L(loy — o2] + |e1 — €2] + |k1 — K2|) for all 01,09, €1,€2 € Sn,
) K1,k €EIRM, ae.in Q (36)

(b)  — F(z,0,¢,k) is a measurable function in the
Lebesgue sense, for all o,e € Sy, k € RM

\ (¢) z — F(z,0,0,0) e H

( ¢ :QUx Sy xSy x RM — IRM and

(a) there exists L'> 0 such that |¢(z, 01,61, K1) — ¢(z,02,€2, k2)| <
< L'(loy — 02| + |e1 — ea| + |k1 = K2|) for all 01, 02,61,€2 € S, '
) K1,k2 ERRM ae. in Q (37

(b) £ — ¢(z,0,¢,k) is a measurable function in the
Lebesgue sense, for all 0,e € Sy, k € RM

\ (¢) 2 — ¢(2,0,0,0) €Y

Ko EY (38)

Remark 4.1. Using (16), (36), (37) and similar arguments as in Remark 3.1 in the -
following we shall consider £ : H —-H, F: HxHxY —H and o : HxHxY —
Y.

The main result of this section is the following:

Theorem 4.1. Let (16), (18)-(20), (36)—(38) hold. Theri, there exists a unique
solution u € C'(0,T,H,), o € C}0,T,H;), & € CY0,T,Y) of the problem
(6)-(11).

Proof. We use a similar technique as in the proof of Theorem 3.1, hence we start

with the existence part. Let X be the product Hilbert space X =H xY and let

n=(n',n?) € C°(0,T, X). We define the function 2, = (z5,22) € CH0,T, X) by:

zy(t) = /t n(s)ds + 2z, forall te[0,T) (39) -
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where -

zZg = ((70 - £€(UO), Ko) (40)

) Using standard arguments of linear elasticity we obtain the existence and uni-
queness of two functions u, € C}(0,T, H1), oy € C}(0,T,H;1) such that:

op =Ee(uy) + 25 in Qx(0,T) (41)
Dive,+f=0 in Qx(0,T) (42)
up=¢ on T'y1x(0,T) (43)
oyv=h on Tyx(0,T) (44)

and, using the same method as in the proof of Theorem 3.1, we have
up(0) = ug, 0y(0) =09 inf. (45)
Let «, € C! (O,T,Y) be the function defined by:
Ky = z,% (46)
Using (36) and (37) we obtain that

t — (F(0q(t), e(un(t)), Ky (), @(on(t), (un(t)), K (t)))

is a continuous function on [0,7] with values in X hence we can define the
operator A : C°0,T,X) — C°0,T,X) in the following way:

1) = (F(0(8), (g (1)), m (1)), $(0q(), (g (1)), 5y (2))) for all ¢ € [0, 7] (47)

We shall prove that A has a unique fixed point. Indeed, let 7, = (5},7%),72 =
(3, n3) € C°0,T,X); for simplicity, we denote: z,, = z1, 2y, = 23, Uy, =
U, Uy, = Uy, Oy, = 01, Op, = 02, Ky, = K1, Ky, = Kz. From (41)—(44) and
(46) we get
fur(t) — w2 (t)|m, + loa(t) — o2(t)|n + [k2(t) — ka(B)ly < (48)

< Clzi(t) — z2(t)|x  forall ¢t €[0,T)

where C > 0 depends only on Q, T; and £. Using now (47), (36), (37), (48)
and (39) we get
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|Am(t) — Ana(B)]x < C'/Ot Ini(s) — ma(s)lwds  forall t€[0,7] (49)

where C dependsonly on Q, T';, £ F and ¢.

Denoting now by AP the powers of the operator A, from (49) we get that
for p large enough the operator A? is a contraction in the space C°(0,7,X). In
consequence, there exists a unique element n* € C°(0,7,X) such that APy* = n*
and morever 7* is the unique fixed point of A. Using now (39)-(46) we obtain
that u,. € C*0,T, H;), o, € C*0,T,H1), kp» € C*(0,T,H;1) is the solution
of (6)—(11).

The uniqueness part of theorem follows from the uniqueness of the fixed point

of A using the same technique as in the proof of Theorem 3.1 or by standard
arguments for evolution equations.

Remark 4.2. Problem (6)-(11) may also be considered in the case of the infinite
time interval (0,4o00) instead of (0,7"). Similar arguments as in Remark 3.2.
can-be used in order to prove that if (16), (19), (20), (35), (36)—(38) hold, then
this problem has a unique solution u € CY(IR4,Hi), o € CY(IR4+, M), « €
C'(Ry4,Y).

5. Conclusion

The paper deals with quasistatic processes for rate-type viscoplastic models used in
order to model the behaviour of real bodies like rubbers, metals, rocks and so on, for
which the plastic rate of deformation may depend on an internal state variable. Two
new demonstrations concerning the existence and the uniqueness of the solution are
presented.These demonstrations are based only on standard techniques for elliptic
problems followed by a fixed point technique and they avoid any monotony or
Cauchy-Lipschitz arguments.
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