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NUMERICAL METHOD OF CONSTRUCTION
THE QUADRATIC DISCRIMINATION
CRITERION MINIMIZING THE
MAXIMUM OF VARIATION

V.Y. SHELEKHOVA, Y.P. YURACHKOVSKI*
\

The problem of adequate regression function choice is considered. The
concept of normalized quadratic discrimination criterion (NQDC) is
introduced. Numerical method based on the theory of linear operators
eigenvalues disturbances for the purpose of construction the NQDC
with minimum of its maximum variation is offered. Examples illustra-
ting offered method applications are given.

1. Introduction

Discrimination criteria are intended to choose from a given finite set of
known functions (with unknown parameters) the one which coincides with
unknown ”true” dependence kept in the sample of observations and distorted
with additive noise. The value of discrimination criterion is used as a mea-
sure of distance from any function to the "true” dependence. The quality of
discrimination criterion can be compared by means of different approaches
based on the various definitions of discrimination criterion optimality. Here
we suppose, that the criterion minimizing the maximum of variation is the
optimal one.

2. Assumptions and Problem Statement

Let’s suppose that the output of a random experimient, carried out in some
points v € V C IR™ is the observed random value y(v,w), w € 2, where Q is
the space of elementary events. We also suppose that random values y(v,w)
are independent and identically distributed and they have an unknown ma-
thematical expectation 3(v), unknown independent from v finite variation
0% and equal to zero coefficients of asymmetry and excess:
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By(v,0) = (v) 1)
E(u(0,) 7)) = Dyfo) = o < o0 (2)
E(y(v,0) - 7())*/* = 0 (3)
E(y(v,0) - T(2))*/o* =3 = 0 (4)

where F means operator of mathematical expectation.

The number of experiments we designate as n and the points in which the
experiment was made are wi,...,wn. Let fo(-,-), fa(+,+) be two functions
determined on the sets V' X ©4, V' x ©p correspondingly. Furthermore, let
these functions be linear by the parameters O, € 0,, ©g € @ correspon-
dingly, i.e.

fa('aeot) = @£¢() (5)

F5(-@5) = @4o() (6)

where

() = [0 bma O () = [B1()s s g (I

Function f,(:,-), fg(:,+) are called structures of regression models or
simply structures and instead of f,(,), fa(+,+) we shall write f,, fg accor-
dingly.

Definition 1. Structure f, is adequate to random value y(-,w) on the set
Vo C V if there exists such a value ®9 x @, that f,(v, @) =7y(v), v € V.

In terms defined above our problem is to find an adequate (on some set)
structure among f, and fs if one of them is adequate.

Function (v) is unknown, therefore a definition can’t be applied for
solving this problem. Below we shall use statistical estimations of structure
which may be adequate.

Let y; = (w;,w), 1 = 1,...,n,

Y = [yla "'7yn]T

Y = [5(w1), ., T(wn)]T
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Definition 2. Value

er(fy) = YTF,Y | M

is called normalized quadratic discrimination criterion (NQDC) if for matrix
F., the following properties are satisfied:

1) F=FT

2) F>0 |

3) if structure f, is adequate on the set {wy,...,w,} then —Y-TF,y? =0,
4) trF., = 1.

Statement 1. If structure fs is adequate on the set {ws, ..., wn}, then for
any F, and Fyg

Ecr(fa)—Ecer(fg) 20 , (8)

Proof. It’s easy to obtain the following equality

Ecr(fy) = E[YTFsY] =Y F,Y + o? (9)

for any 4. In addition ?TF,G—}—’— = 0 and TTFO,T > 0. Statement (8)
follows from (9) and these inequalities. '
So we see that

f: arg min _cr(f 10
1rligyy T (10)
may be used as estimation of the adequate structure on the set {ws, ..., w,}.
Matrix F., in (7) an in (10) is not unique. Arbitrariness in its choice we
shall use to optimize discrimination criterion quality.
Let

X = (2] = [¢(wi)]  Z = [zi5] = [¢(wi)]

The criterion d(a/8) of discrimination criterion quality assumes a ma-
ximum of variation of random value cr(f,) calculated in supposition that
structure fs is adequate on the set {w,...,w,} and ||@]* = @OﬁTGO =

2 .
n° >0, i.e.
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d(a/B) = max D er(fy)
YeYVs

where ‘
Vs ={Y : Y = 20y, ||04]* = »* > 0}
We define also

Fp(a/B) = arg fiz d(a/f)

Our main purpose is to create the numerical algorithm of matrix F'p(a/f)
construction.

3. Method and Mathematical Substantiation
Let N be such a matrix that
| NIN =T
NNT =1 - x(xXTx)'xT
and
NTzzTN =Uru? an

is the spectral factorization in which

2o 0
I' = diag (71, ...,1n) = ,y M< .. <7
0 Tn

It is easy to prove (Yurachkovski) that any matrix F, may be represented
in the form )

F,=NAATNT (12)
where A is such arbitrary matrix that
trAAT =1

As it was proved by Seber (1980)
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" D cr(fa) = DIYTF,Y] = 20*trF2 + 40V F,Y

therefore

d(a/B) = max D cr(fy)=20%rF2? + 40°Y F, Y (13)

Yeys
= 20%rF? + 40® max Y F,Y (14)
Yeys
= 20'rF?+40° max OTZTF,ZO (15)
1@ sl[2=n?
= 20%rF? 4+ 40?p*A_1[ZT F2 7] (16)

where A_;[C] designates the greatest eigenvalue of matrix C.
From equalities (11), (12) and A_;[CCT] = A_4[CTC]
follows that
d(a/B) = 20*tr(AAT)? 4+ 40?9?21 [AATUTUT AAT).
Let h = ¢2/(27?%) then

F(a/f) = N(AAT),NT

where
Ty* T T T Ty2

(AAT)p =arg | min }( 1[AATUTUTAAT) + h-tr(AAT)?)

or
Fp(a/B)= NU(BBT),UTNT

where

(BBT)} = arg min_~ ( A4[BBTrBBT] + hir(BBT)? )

{BBT:trBBT=I}

and

BBT —uAATUT
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We shall accomplish the search of (BBT)*D by meansof the gradient
projection method. This method consists of two procedures:

1) finding the direction of the greatest decreasing of the minimized
function

®(B) = A\_1[BBTIBBT] + htr(BBT)?
2) projection of obtained direction vector on the permissible domain
B ={BBT :trBBT = I}

The direction of the greatest decreasing of function ®(B) is given by
matrix —0®(B)/0B. It is easy to see that

08(B) _[09(B)] [0r_1[BBTrBBY] T h otr(BBT)?
0B 8bij N 0b;; 0b;;
If multiplicity of A_1[BBTI'BBT] is one then

dX_1(BB'TBBT] _
ab,-,- -

i A1 l(B +€Gi)(B + Gy )T (B + eGi;)(B + £Gi;)T1+ A_1[BBTrBBT]
e—0 £

where G;; is a matrix whose element with number (4, §) is equal to one and
the rest of the elements are equal to zero.

‘ According to the eigenvalue perturbation theory the last limit may be
easily calculated. It is equal to

L, (GB"rBB” + BGErBBT + B'rG;;BT + BBTIBGL)v_,

where v_, is matrix BBT 'BBT eigenvector corresponding to the greatest
eigenvalue. Thus

0Ar_1[BBTIrBBT)
8b1~j

=2v_1vL,BB'IrB + 2rBBTv_;vT,B (17)

It is easy to show that
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dtr(BBT)?
pen )
8b,-j
From (13), (14) we obtain that

= 4hBBTB (18)

08(B)
0B

=2v_1v5,BBTIrB + 2rBBTv_1v* B+ 4hBBTB  (19)

Denote By BF the approximation of k—th iteration. Then in procedure
1 of (k 4+ 1)-th iteration consists in calculation of

0%(B)

§k+1:Bk-*S 8B

|B=Bk = By — s©(By)

where s > 0 is the step of (k 4 1)-th iteration.

. . o~ =T i
Procedure 2 consists of projecting the matrix Bj41By,, on domain B,
i.e. o

—~ T | ~— ~T
Bis1Biy1 = Bip1Byy 1 /trBey1 By, =

_ _(Bk— s®(By))(Bi — s9(By))”
~ tr(By — s9:(By))(Bi — s9:(By))T

If multiplicity of eigenvalue A_{[BBTI'BBT] is not one formula (13)
is not correct and hence formula (16) does not lead to the step of gradient
projection method. If the only multiplicity of A_;{[BBTI'BBT] isn’t one
after one or more steps performed by formula (16) algorithm comes to the
point where multiplicity of eigenvalue is one and the using of formula (14)
becomes well-grounded.

(20

4. Algorithm Description

The gradient search is used in the algorithm. Therefore, the speed of the
alghorithm depends considerably on the initial approximation of matrix B
(or BBT), direction of motion and step at every iteration, and halt criteria.
Initial approzimation of matriz BBT we obtain as a weighted sum’ of two
matrix, i.e. :

BB" = p\(BBT), + p»(BBT),
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where (BBT), and (BBT);, are matrices on which minimum of functionals
A_1[BBTIrBBT] and tr[(BBT)?] are achieved correspondingly. Note that
this matrices are diagonal. Elements of matrix (BBT) depend on ny -
number of zeroes in v = diag (11, ...,7s) : (BBT)) = diag (1/n,...,1/n;,0,
.,0), if n, isn’t zero ; otherwise, elements (BBT), are calculated from
equations

(BBT)\%/" = (BBTY|7;/* forevery i,j=1,.,n

S (BBT) =1

Hence, i-th element of diag(BBT) 3 is
1

W (S )

Diagonal elements of matrix (BBT)}'1 are equal to 1/n. Weights p, and
ph, depend on {v;} and h.

Choice of direction and step. At any point of iteration algorithm,
motion is conducted towards the antigradient —9®(BB)/dBB. The norm
of 02(BB)/0BB depends linearly on the values {v;} and h, so that if the
value ||0®(BB)/0BB - step|| isn’t very large (or small) it’s necessary to
normalize values {v;} and h.

The motion is conducted until ®; decreases, where &, is the value of
functional ® at the k-th iteration. The increasing of ®; is possible either
when the step exceeds distance to extremum or when antigradient of func-
tional @ is considerably changed. The last case we shall determine below
as a leap over junction of functional ®. In both cases the motion should be
continued, the step decreased beforehand. Note, that the iteration process
can be conducted along the functional junction. In this case the rapid step
decrease will result in unnecessary growth of calculation time. To obtain
available value of eigenvalue A_;[BBTI'BBT] Jacobi algorithm is used,
and to get corresponding eigenvector v_1[BBT I'BBT] power method is
used. :

Stop criterion. During the iteration process the minimal value of &
(we denote it ®,p) and the matrix in which it’s achieved are saved. The
criterion of the end of calculations consists in unchangeability of ®,,¢ during
N times leaps over junctions.

Let’s mark the additional peculiarities of the given algorithm. On
some steps of the gradient method it may occur that matrix BBT becomes

(BB")j =
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diagonal, in this case the further search will remain within the space of
the diagonal matrix. To avoid this it is necessary sometimes to check the
diagonality of BBT and, when diagonality takes place, it is necessary to
noise up the matrix elements:

(BBT)Y,, = (BBT){ + ¢,

where ¢}, is the monotonously decreasing sequence. Apart from the checking
up of diagonality it’s necessary to watch if BBT is a singular matrix. In
algorithm a Cholesky triangle factorization procedure for positive definite
symmetric matrix is used. Noising up of diagonal elements makes it possible
to leave the class of the singular matrix, because for any singular matrix
A(A + £I) is a nonsingular one for any small £ > 0.

To increase the speed of calculations eigenvector v_; of the k—th iteration
is handed as an initial approximation of v_; at the (k+1)-th iteration. When
doing this we must bear in mind that the junction of functional means that
A—1 is considerably changed. Thus it can occur that v—_; from the previous
iteration is saved as eigenvector, but it does not corresponds to A_;. It
takes place, for example, for h = 0 eigenvectors of matrix BBT 'BBT are
ortonormal basis eq,...,e,. If v_1 is e; at the k—th iteration and leaps over
the junction it becomes e; at the (k + 1)-th iteration (¢ # j), power method
will not detect the error. Thus we must change the initial approximation of
v_1, when ®; increases:

vﬁl = v’f_*l'l +6, 6= const
Note, that every time the elements are noised up we must normalsize

v_; and BBT by formulas lv_1]| =1, trBBT = I.
In the algorithm we use following values and constants:

p,\/Ph = tT’)//h, gh = max(71,---,7nh)a Stepk/Stepk+1 = 1'02,

{é‘k} &0 = 0.01, and Ek4+1 = ék/2, fk = IOEk, 6 =0.01.

5. Examples

We have set up in all the examples the same matrix I' = diag(1,4, 9, 16).
1. h=0. |
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In this case we obviously obtained the diagonal matrix

(BBT)}, = diag(0.48, 0.24, 0.16, 0.12).

2. h=0.1.
0.480478 0.000020  0.000031 —0.000068
0.239764 —0.000176 —0.000087
Ty* __
(BB™)p = 0.159956 —0.000018
0.119803
3. h = 100.

It’s easy to show that (BBT)}, — diag(1/n,...,1/n) when h — oc.
In this example matrix (BBT)% is close to the diagonal one. Really, the
modules of all nondiagonal elements are less than 107%. In our calculations

(BBT); = diag(0.258929, 0.258929, 0.258929, 0.223214).
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