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ON FAST STATE-SPACE ALGORITHMS
FOR PREDICTIVE CONTROL'

MariaN J. BLACHUTA*

- A Riccati-equation-based solution to a class of receding-horizon predictive con-
trol problems for an explicit-delay state-space model of an ARMAX system is
found and the corresponding vector Chandrasekhar-type equations are derived
for both filter and controller gains to improve the computational efficiency.

Keywords: Riccati equation, Chandrasekhar equation, LQG control, predictive
control.

1. Introduction

A quarter of a century has passed since Astrém (1970) started a direction of control
theory based on the input-output description of discrete-time systems working under
stochastic disturbances, the aim being the design of controllers which optimise a
receding horizon quadratic performance index. One of the best known and widely
used algorithms of this class is the so-called Generalised Predictive Control (GPC)
(Clarke and Mohtadi, 1989; Clarke et al., 1985; 1987). Just from the beginning, this
approach attracted an immense attention of control practitioners, which resulted in a
large number of papers presenting further theoretical developments and applications.

In the classical literature (Clarke and Mohtadi, 1989; Clarke et al., 1987), the
GPC controller has been usually presented as a solution to a control problem with
a receding horizon quadratic performance index. Both the performance index and
the process model have been formulated in the input-output implicit delay terms
and the solution has been based on free predictions of the output variable calculated
from an ARMAX or ARIMAX model. As a result, calculation of control requires
inversion of a symmetric matrix whose dimensions equal the control horizon N,,. For
numerical reasons, this horizon should be limited, which affects the quality of control,
particularly when the sampling rate is high.

Along with this, for about two decades efforts have been made to perform the

state-space synthesis of minimum-variance and predictive controllers (Blachuta, 1987;
1996a; 1996b; Blachuta and Ordys, 1987; Byun et al., 1990; Caines, 1972; Gambier
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and Unbehauen, 1993; Grimble, 1994; Krauss et al., 1994; Kwon et al., 1992a; 1992b;
Lee et al., 1994; Matko, 1990; Ordys and Clarke, 1993; Warwick, 1987; 1990; Warwick
and Peterka, 1991).

State-space solutions to a control problem can be obtained by using either
the OLF (Open Loop Feedback) (Blachuta, 1996b; Gambier and Unbehauen, 1993;
Krauss et al., 1994; Kwon et al., 1992a; 1992b; Kwon and Byun, 1989; Lee et al.,
1994; Ordys and Clarke, 1993; Warwick and Peterka, 1991) or the CL (Closed Loop)
approach (Bitmead at el., 1990; Blachuta, 1996a; 1996b; Gambier and Unbehauen,
1993; Lee et al., 1994; Ordys and Clarke, 1993).

The computational complexity connected with the controllers that base on Ric-
cati equations depends on the system order and not on the control horizon. Unlike the
OLF solution, an important feature of the CL solution is that an infinite-horizon prob-
lem, i.e. a problem where N — co, can be stated and successfully solved (Blachuta,
1996a; 1996b).

However, the solutions can suffer from implicit delay singularities when the con-
trol costing A = 0, for an explanation see (Blachuta, 1987; Kowalczuk and Suchomski,
1997), and a nonstationary noise model. Very often, (Bitmead et al., 1990; Lee et al.,
1994) the state-space models employed do not match any state-space realization of an
ARMAX or ARIMAX model and thus cannot be compared with classical solutions.
An approach where the solution is based on an ‘innovation-like’ representation of an
explicit-delay ARMAX (or ARIMAX) model, yielding a controller which is function-
ally equivalent to a classical GMV, GPC or LQG controller in the steady state and
better in transient states, was proposed in (Blachuta, 1996a; 1996b). This paper
provides a detailed derivation of that controller.

As is well-known (Morf et al., 1974), for some special filtration problems the
matrix Riccati equations can be replaced by the so-called vector Chandrasekhar-type
equations. In the paper, fast Chandrasekhar-type algorithms for both the filter and
controller gain vectors are derived to minimize the number of operations required to
perform the necessary computations.

2. State-Space Formulation of Predictive Control

It is assumed that the system to be controlled is described by the following state-space
model:

Tit1 = Az;+ bu; + cy; (1)
Yi = d/:Bi + v; (2)

in which A is an n x n matrix, b, ¢ and d are n-vectors, v; is a white noisewith
covariance Ev? = 02, and the initial condition, xg, is a normal random vector
independent of the disturbances, i.e. E{(zov;) = 0, ¢ = 0,1,... with E{z¢} =
mg, cov{(zo—mo)} = 02Q,. The model (1)-(2) is misleadingly called ‘innovations
model’ in the literature. Indeed, it has a constant vector ¢, constant variance o2 and
a random initial condition g, while in the innovations model the initial condition zq
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is deterministic and both the Kalman gain ¢; and innovations variance U'f do depend
on time i. This is explained in detail in Section 4. For a relationship of (1)-(2) to
other stochastic state-space models see (Blachuta and Polariski, 1987). Model (1)—(2)
is input-output equivalent to an ARMAX model :

A=Yy = Blz Vuig + G, 3)

where z"A(z7!), 2”C(z~!) are monic n-th degree polynomials in the shift operator
z and z™B(z7'), with m = n — k, is an m-th degree polynomial with leading
coefficient by. Conversely, given an ARMA model (3), a state-space representation
(1)-(2) can be constructed using canonical forms. The system (1)-(2) can also be
considered by as a state-space representation of a Box-Jenkins, Ljung-Sdderstrém or
step-response model with an ARMA disturbance (Blachuta, 1996a).

A receding-horizon explicit delay performance index I; is of the form

i+N-—1 i+ Ny —1

L=E{J}=B{ S o2 +x Y 4)
j=i j=i

where N, < N, and additionally it is assumed that
u; =0 for j> Ny (5)

Here N is called the cost horizon, N, a control horizon, and % is a discrete-time
delay in the control path.

Denote by 4; = [yo,¥1,- - -, ¥i, Uo, U1, - - ., Ui—1]" the vector containing the infor-
mation available at time 7. The control problem consists in finding u; = f;(%;) which
minimizes I; of (4).

The above problem statement is flexible enough to encompass both LQG and
GPC control problems. Usually, a different problem statement can be found in the
literature (Clarke and Mohtadi, 1989) where a problem is defined using the increments
of the control signal Aw; = u; — u;—1, rather than the actual control input u;. In
this way, an integral action in the control loop is guaranteed but, unfortunately, the
implicit disturbance model becomes nonstationary:

C(z™)
A

Note that realistic disturbances are usually modelled by stationary stochastic pro-
cesses characterized by their spectral density or correlation function.

A(z"Y)yi = Bz Duig + v; (6)

Methods of imposing the integral loop action without resorting to nonrealistic
nonstationary noise models are discussed in (Blachuta, 1996a).

3. Riccati Equation Solution to the Control Problem

Denote by &;; = E(x;|§;) the optimal estimate of x; based on the information
available at time ¢ and supplied by the Kalman filter. Then we have
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Theorem 1. The optimal control law has the form
ui = —ky[F&;); + cyi] (7)
_ _ Pob (8)
A+ bPob
where Py is calculated from the following set of recursive equations:
i. (Lyapunov)
P; = APj At dpidy_y, Py =dyady, (9)
for j=N-1,...,N, and
ii. (Riccati)
P, . bb'P;
P; = A (P, — L") 444, .d 10
f ( i1 N+ 0P, 01b +dp_1dy_y (10)
for j =N, —1,...,0, where the vector dy_, results from the recursion
do=d, dj=A'd;_;, §j=12,... k-1 (11)

Remark 1. Notice that due to the special form of system equations (1)-(2), the
control law in eqn. (7), which is a function not only of the state estimate but also
of the current reading y;, is somewhat different from the usual linear state feedback.

This issue is further discussed in Remark 2 following the proof.
Proof. From (1)—(2) and (11) it follows that

k-1

Yirk = 1 (Az; + cv;) + gru; + Z e1Vj k1
1=0

where g; and e; are the corresponding Markov parameters:
90 =0, gi=d;_b=dA"b, j>0
=0 e=d_g=dA g ;>0

and for a k-step time delay in the control channel we have

gO:O> 91:0) cevs gk—le: gk:bo#o

(12)

(13)

(14)

(15)

The performance index J; in (4) with (5) is equivalent to the following;:

i+N-1
L=E{L}=Eq > 2, +\u?

i=i

(16)
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where

A=A for i=0,1,...,N,—1 (17)
and

Ai—oo for i=N,,...,N -1 (18)

Substituting (12) into the above performance index and averaging the terms contain-
ing noise which will appear later with respect to any time instant j, we get

k—1
Ii=E{J}+ Na?> ¢ (19)
=1
and
i+N-—1 ,
J,L/ = Z {[d;‘_l(A:I:] + C'Uj) + bQ’LLj]~ + )\ju;} (20)
Jj=1i

A solution to the deterministic problem (1) with the performance index (20) can
be found based on the Hamiltonian:

Hj = [d},_, (Az; + cvj) + bou]” + \ju? + 2,1 (Az; + buj + cvy) (21)
Assume that the adjoint variable p; is of the form

OH

p; = e (Pj —dpadj,_y)z; + I (22)
j
with p;,y = 0. The optimal control minimizes the Hamiltonian, i.e. it can be
calculated from
b'f.
U; = ——kcvl(A:E'-{-C’U')——J-H (23)
J 7 J 7 )‘j + b,Pj_Hb
Pb
kS = —— T 24
J )‘j -+ b/Pj.Hb ( )
P 1bb
£ =A [I - m] (fjp1 + Pjr1cu;) (25)
P, 1bb'P;
P~:A'(P' _M)A di_d 2
j T Sy P p) A G (26)

with fi ny =0 and Piyn =dp_1d,_q, for j =i+ N —1,...,i. As aresult, for the
current time ¢ we have
N-1
u; = —k{(Az; + cv;) + Z 0 kVitk (27)
k=1
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where 6, depends on neither the state nor the noise. Applying the Certainty Equiv-
alence Principle (Uchida and Shimemura, 1976), i.e. replacing stochastic variables by
their estimates based on the information available at time 4, eqns. (7)—(10). |

Remark 2. The way the problem is solved in certain references is (a) to solve a
deterministic LQ problem with v; = 0 in (1)—(2), and (b) to combine it with a
Kalman filter for (1)-(2). The resulting control law u; = —kj A&;);, linear in &;);, is
then incorrect.

4. State Filtration and Prediction

The Kalman filter equations (Anderson and Moore, 1979) for the system (1)-(2) have
the form

Zi); = Tyt k! ly; — d'E;)-1] (28)
i = Fag+bug+ cy; (29)

with
F=A—cd (30)

&)—1 = mo and the Kalman filter gain, k:f , given by the formula

z.d
Bl = 2 31
T 1T dsd (31)
where £; = cov (Z;),-1)/0%, with &i;_1 = Tiji—1 — Tyji-1, 18 calculated from the

recursive Riccati equation

2,dd's;

Y =F (3 - =52
o ( 1+d%d

) F', 3,=Q, (32)

The Kalman filter (28)—(29) can be transformed to the following innnovations
form: :

ip1i = AZjjio1 +bu; + cieg (33)
Yi = dliili.q + €; (34)

where the initial condition is deterministic Zoj—1 = g, and both the noise covariance
and gain are time-varying:

E{e?} = o*(1 + d'Z;d) (35)
c;=c+ Fk:i.c (36)

If the Box-Jenkins model is invertible, i.e. C(z) = det(zI—F) is a stable polynomial,
then lim; o 3; = 0 and, as a result, both the predicted, &;;;—;, and the filtered,
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Z;);, values of the state vector become equal as time 4 tends to infinity (Caines, 1972)
and are given by

QA'LH_l = F{I\'Iz + bUi + cy; (37)

In (Blachuta, 1996b) it was shown that the filter (37) together with the control
law (7) are equivalent with respective predictive algorithms derived in the input-
output framework, with the polynomial T'(z7!) = C(z71).

5. Chandrasekhar-Type Equations for the Controller

If one’s aim is only to find a series of gain vectors k; instead of the matrices P;,
1=0,1,...,N — 1, it can be found from a set of vector Chandrasekhar equations.

Theorem 2. Assume that N, = N and X > 0. Then the controller gain, k{, reads
as follows:

k=1 (38)
where

i = A (14 By), AN = A+ b (39)

q; = g4+ ﬁi+1A’Pi+1v gy = body (40)

p; = Alpz'+1 = Bi+19iy1, PN = \/Xdk (41)

and B; = (b'p;)/Ni. The Riccati matriz P; can then be calculated from

!
P; = Pi+1 + %, Py = dk*ld’k—l (42)
Proof. Let us introduce the differences §P; = P;y1 — P; of the Riccati matrix P;
and set A}, = A—bk{, ;. Then )\;, k; and 6P; can be expressed by the differences
O0P;+1 as follows:

Ai = Xiy1 — b'0P;1b, (43)
A 6P b
K = kg, - T (44)
Aq
5P, 1bb'sP; )
oP; = A:J’rl |:(5Pi+1 + __tl/\—zt_l_:' Ai+1 (45)

for =N —1,...,0 with the terminal condition for eqn. (45):

A :
5PN_1 - PN —'PNfl = dk <——A+—b(2)> dk (46)
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From (46) it follows that for alli=N —1,...,0 we have 6P; = w;(—¢;)w; and

(w2+1b)

! */
widiw; = AL Wity |Pit1 — Y
7

2
2 ! *
Pii1 wi-HAH—l

(47)

The matrix equation (47) is then factorized yielding the following system of equations:

w; = (\A — bkf;l)lwi+1
(wi1b)?
¢ = dip1 — ‘*_Kil—¢%+1

Ai = A1+ (Wi ) Biga
A transformation of eqn. (44) gives

kC — k¢ (A — bk} y) i1 gita (Wi, b)
i i+1 )\i
Introduce new variables, q; and p,, where

4; = Ak, p; = wi(gih)'?

(48)

(49)

(52)

. with the terminal conditions gy = bod) and py = v/Ady. From (51), when express-

ing ki by ki = q,;/)\;, we have
Q= Qi1 + Pir1 (Wi b)A'wiy,y

Finally, expressing w;4, as

Wit = pyyy (Pir1dip1) ™2
gives
b'p,
q; = g1+ “/\_Z—+1Alpi+1
141
b'p,
Ai = Ajp1 + '/\—ﬁl
i+l

Proceeding in the same way, the first two equations in (50) become

(A’p» _blpz‘+1q‘ )( PiAi )1/2
L N ) \ i hi

b, =
(b'pit1)?
= b 1— el
¢L ¢z+1 |: )\i)\i+1
From (58) and (56) it follows, however, that ¢;)\; = ¢sr1 ;11 and

b'p, 1
p;=Ap;y — /\.z+ qit1
i+1

Finally, from (47) it results that §P; = —p,pl/\;. [ |

(53)

(54)

(55)

(56)

(59)
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6. Chandrasekhar-Type Equations for the Filter

It is now assumed that the process defined by (1)—(2) is stationary, i.e. that the
covariance matrix o?@Q, is based on a solution to

Qo = AQy A" + ¢ (60)

In order for such Q, > 0 to exist, the subsystem controllable from v; must be stable.

Theorem 3. Assume that Qy > 0 fulfils (60). Then the vector kf is defined as

k] = ™ (61)
where

rit1 = ri(1 — o), o =1+d'Q,d (62)

hit1=h; —ail, ho = Qod (63)

litg1 = F(l; — a;hy), lo=10(FQyd + c) (64)
with a; = (d'l;)/r;. The matriz X; is given by

Y =3 — %, 3o =Q, (65)

Proof. If we define 6%; = X;,1—%; and r; = 1+d'Z;d, then the following equations
hold:

Tir1 = T+ d'd‘zjld (66)
I-kld)éxd
KL,y = k] 4 Lo kid)iNd . ) (67)
Ti+1
6%,dd'6%;
08 = F(I—kl{d) |68 - =—2| (I - kld)'F' (68)
Ti+1
We also have
650 = —ro(Fki + ¢)(FkI + c)’ (69)
The above formula can be rewritten in the form ¥y = wopow; with wo = Fkg +
¢, o = —Tro, which leads to the factorization 6%; = w;p;wj. Now, eqn. (68) takes
the form
s I»d 2
Wip1pipwiyy = F(I -kl d)w; [‘Pi - gf?u wi(I —k{d)F' (70)
i+1
which implies
wi = F(I -k d)w; (71)
fw;d 2
Yiy1 = Y; — (io—)_ (72)

Ti41
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The remaining equations are

Yit1 = X+ pww; (73)

riy = i+ @i(d'w;)? (74)
I -k d)owwd
k{+1 _ k{ + ( i )‘szwz (75)
Ti+1
In the next step, we introduce vectors h; and I; as follows:
hi - T’ikif, li = wi(—gpiri)l/z (76)

We are now able to eliminate the variable ¢; and to transform eqns. (74)—(75) to the
form defined by eqns. (62)—(64). Inserting w; = l;(—pyr;)~'/? to (74) gives

d'l;)?
Tit1 =T — ( 1) (77)
L
From (75) we have
hiv1 = hi + piw;wid (78)
Hence from (78) eqn. (63) is obtained. Similarly, from (72) and (74), we have
Pit1Ti+1 = PiTy (79)
while from (72) and (76) it follows that:
1 e V2
lisn = F (I - —hid’) A M] (80)
£ pirs

As a result, combining (80) and (79) gives (64). |

7. Conclusion

In this paper, a class of predictive control problems has been solved based on an
explicit-delay ‘innovations-type’ state-space process model and a receding-horizon
quadratic performance index. The solution consists of two parts. The first one,
which consists in finding the optimal controller gain, can be found as a solution to
some LQG problem. The computational complexity of the solution that bases on a
Riccati equation depends both on the cost horizon N and the system order n, and
not on the control horizon N,. The other part consists in finding the filtered state
variable, which can be accomplished either optimally by using a full Kalman filter
(28)—(32) or only asymptotically optimally by using the time invariant filter (37).

It has been shown that the Chandrasekhar equations can improve the computa-

tional efficiency in comparison with the Riccati equations, because instead of updating

n? entries of the Riccati matrix only 2n entries of two vectors plus one scalar variable

.-
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are to be updated. For n > 3, this reduces the number of calculations. The above sav-
ings are particularly important for systems with a large value of the delay/sampling
period ratio, and for higher-order step-response models.

Finally, vector Chandrasekhar-type equations have been derived for both the
controller and filter gain vectors.
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