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Recent advances in deep learning have been utilized successively to improve the performance of signature verification (SV)
systems. Deep models proposed in the literature are complicated and need to learn many parameters to give acceptable error
rates, requiring a lot of training data. On the other hand, those models are designed and hand-crafted specializing in the
problem, online or offline SV. In this work, we suggest and show on popular datasets that similar and simple convolutional
neural network (CNN) models can achieve state-of-the-art results both for offline and online SV problems. For offline
SV, our work outperforms its counterparts with and without data augmentation. We also show that a very similar CNN
architecture can be employed for online SV. To the best of our knowledge, this is the first work to show that CNNs can be
used to learn online signature representations directly from raw data.
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1. Introduction
Signature verification systems (SVSs) aim to distinguish
reference signatures from forgeries. Different numbers
of genuine signatures (e.g., 1, 5, 12) of a writer can
be used as reference signatures. Forgery signatures are
broadly divided into two categories: random and skilled.
Random forgeries are signed without knowledge of the
signature to be imitated. Signatures of different writers
are commonly considered random forgeries and used to
evaluate the performance of SVSs. Skilled forgeries (SFs)
on the other hand, are signed after some practice to imitate
a genuine signature. In this case, the forger has access
to one or several signatures of a writer. Since SFs have
great resemblance to genuine signatures, it is important to
evaluate the performance of an SVS on SFs.

SVSs are divided into two categories depending
on the acquisition method: offline and online. Offline
signatures are represented as a digital image with binary
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or gray-level pixel values. They are captured after the
writing process is completed. In online case, signatures
are acquired during the writing process. In addition
to position trajectories, pressure, azimuth and elevation
signals can be stored depending on the acquisition device.
Because of the dynamic information, it is easier to detect
forgeries in online SV systems.

For decades, SV has been of great interest to
researchers. A comprehensive review can be found
in Diaz et al. (2019). Direct comparison of studies
is not usually possible because of various experimental
protocols, such as use of databases for training and testing
and evaluation metrics. A common practice to report
results is the equal error rate (EER) which is the threshold
point where the false accept rate (FAR) and the false reject
rate (FRR) are equal. The area under the curve (AUC) is
another performance metric that measures the area under
the receiver operating characteristic curve.

The objective of this work is to demonstrate the
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complexities of current SV approaches and the differences
of models in online and offline cases. The motivation is
to develop a simpler system that can handle online and
offline SV without specifically designing and fine-tuning
for each case. For this purpose, we present a novel feature
learning strategy to detect forgeries. The discriminative
power of features is evaluated for both offline and online
SVSs. For offline signatures, the effectiveness of higher
resolution at test time is investigated following Touvron
et al. (2019). Significant performance gain is obtained
even without data augmentation. A CNN is employed
to learn online signature representation directly from raw
data, to the best of our knowledge for the first time. It
has been shown that a simple CNN can outperform more
complex architectures (Ahrabian and BabaAli, 2019).

The rest of the paper is organized as follows.
Section 2 summarizes the related works on SV. Section 3
describes the proposed methodology for representation
learning. The experimental protocol and results are given
in Sections 4 and 5. Finally, Section 6 concludes the paper.

2. Related work
Strenuous research effort has been devoted to extracting
handcrafted features before the application of deep
learning approaches. Common feature extraction methods
for online signatures are categorized into two types:
function-based and parametric. Function-based methods
are used to represent signatures as a time function of
features such as position, velocity, acceleration, pressure,
direction of pen movement. On the other hand, in the
parametric approach, a signature is represented as a vector
of elements. Each element is a feature such as the total
signature time, the number of pen ups and pen downs,
the wavelet transform, the Fourier transform and so on.
Common classification methods include dynamic time
warping (DTW), principal component analysis (PCA),
Euclidean distance, hidden Markov models (HMM) and
support vector machines (SVM) (Impedovo and Pirlo,
2008). Recent literature surveys on online and offline SV
can be found in (Kaur and Kumar, 2021; Hameed et al.,
2021; Minaee et al., 2023). In addition to handwritten
signatures, it is possible to sign a message or document
digitally. A group signature scheme even allows a group
member to anonymously sign a document in substitution
for the group, protecting the privacy with the help of
blockchain (Devidas et al., 2021).

2.1. Offline SV. In (Yılmaz and Yanıkoğlu, 2016)
the histogram of gradients, local binary features and
a scale invariant feature transform are used to deploy
an offline SVS. Scores of writer-dependent (WD) and
writer-independent (WI) classifiers are combined to make
a decision. Sparse coding is employed to represent
offline signatures in (Zois et al., 2017). A local

feature-pooling method that uses second-order statistics of
the sparse codes is proposed with a segmentation strategy
that utilizes spatial pyramid and binary robust invariant
scalable keypoints. Zois et al. (2019) propose a feature
extraction method that measures the asymmetric relations
between pixel templates. A decision stump committee
with a boosting feature selection algorithm is utilized to
build the classifier.

Recent studies in offline SVS have shifted to
a feature-learning approach instead of relying on
handcrafted features. While learning features to classify
genuine signatures of writers is a simple task that can
achieve low error rates via CNNs, learning features
for detection of SFs is an important research area.
Hafemann et al. (2017) propose a CNN to learn features
for offline SV. A weighted sum of two loss functions
are minimized. While a multi-class cross entropy loss
term is used to classify writers of genuine signatures, a
binary cross entropy term forces network to distinguish
genuine signatures and SFs. They also train another
network using only genuine signatures to measure the
impact of the usage of SFs on feature learning. Another
CNN architecture is proposed by Calik et al. (2019).
They propose a classifier algorithm to recognize offline
signatures in the case of a limited training size per writer.

A siamese network is proposed to build an offline
SVS by Dey et al. (2017). The network is trained
to minimize the Euclidean distance between similar
signature pairs while maximizing the distance between
genuine-forgery pairs. In (Yılmaz and Öztürk, 2018),
a two-channel CNN (Zagoruyko and Komodakis, 2015)
architecture is used to make a binary decision. While
one channel is allocated only for genuine signatures
as references, the second channel is fed with genuine
signatures or SFs as queries. Score combinations of WI
and WD verifiers are utilized for lower error rates.

To encode a sequential representation into static
signature images, static-dynamic interaction networks
(SDINet) have been utilized for offline SV (Li et al.,
2021). A static signature image is converted to sequences
by assuming pseudo-dynamic processes in the static
image, followed by the extraction of deep features
from signature images describing the global information
of signatures. The static-to-dynamic conversion and
the dynamic-to-static attention are unified into a
compact framework. Accuracies of 94.42%, 95.00%
and 89.66% are reported on BH-SigB, BH-SigH and
GPDS-Synth4000 (different from GPDS-Synth10000),
respectively.

A two-channel and two-stream transformer approach
(2C2S) to cope with the SV problem is proposed by
Ren et al. (2023), consisting of original and central
streams. The original stream receives the original
signature pair as input; on the other hand, the central
stream receives the signature pair generated by cropping
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the central at the original pair as input. Verification
accuracy is measured on SUES-SiG, CEDAR, BHSig-B,
and BHSig-H, reaching 93.25%, 90.68%, 100%, and
72.22%, respectively.

Applying the data augmentation directly to the
features instead of the signature image has been proposed
(Arab et al., 2023). The features generator is based on
mutation, cloning, and resources competition mechanisms
of artificial immune systems. Experiments performed
on CEDAR, GPDS-300 and MCYT-75 datasets with 5
references provided EERs of 5.00%, 7.80% and 8.30%,
respectively.

A writer-independent offline SV approach using
attention-based multiple siamese networks with primary
representation guiding has been proposed (Xiong et al.,
2023). The proposed system takes the reference signature
images, query signature images, and their corresponding
inverse images as inputs. These images are fed to four
weight-shared parallel branches, respectively. A mutual
attention module discovers prominent stroke information
from original and inverse branches. According to the
experiments on BHSig-H, BHSig-B and UTSig datasets
EERs of 10.17%, 8.11% and 18.08% have been reported,
respectively.

To solve the problem of a small amount of effective
information in signature images, an end-to-end multi-path
attention inverse discrimination network that focuses
on the signature stroke parts to extract features by
reversing the foreground and background of signature
images has been proposed (Zhang et al., 2023). The
problem of high intraclass variability has been handled
by multi-path attention modules between discriminative
streams and inverse streams. The method has been tested
on CEDAR, BHSig-Bengali, BHSig-Hindi, and GPDS
Synthetic datasets with accuracies of 100%, 96.24%,
93.86%, and 83.72%, respectively.

The problem of a limited number of signatures in
offline SV has been addressed by Hameed et al. (2023). A
deep learning-based image augmentation model is capable
of augmenting better-quality signatures with diversity
from a single signature image only.

Zois et al. (2023) propose the mapping of
handwritten signature images to points of the tangent
space of a connected symmetric positive definitive (SPD)
manifold for SV. Based on the principles of differential
geometry, the limited training data problem is targeted
in this manifold by proposing feature augmentation
methods. A meta-learning framework in the space of the
SPD manifold to learn a pairwise similarity metric for
writer independent offline SV has been offered (Giazitzis
and Zois, 2024). Pairs of handwritten signatures are
first converted into a multidimensional distance vector
with elements corresponding to SPD distances between
spatial segments of the corresponding covariance pairs.
A meta-learning approach then follows to explore the

structure of the input gradients of the SPD manifold
utilizing a recurrent model, constrained by the geometry
of the SPD manifold.

Learning with rejection and top-rank learning
techniques are applied by Ji et al. (2023). To provide
a single input, a pair of genuine and query signatures
is stacked in a single feature vector named the paired
contrastive feature (PCF), internally representing the
similarity between two signatures.

A multi-task framework for learning handwritten
signature feature representations based on deep
contrastive learning has been proposed by Viana
et al. (2023). As the first task, signature examples of the
same writer are mapped closer within the feature space
while separating the feature representations of signatures
of different writers. In the second task, SF representations
are adjusted by adopting contrastive losses with the goal
of performing hard negative mining. On GPDSsynthetic
first 300 writers, 4.02%, 3.24% and 3.33% EERs are
obtained with 5, 10 and 12 references using WD models.
5.48%, 4.69% and 4.51% EERs are obtained with 5, 10
and 12 references using WI models. On CEDAR 4.43%,
3.45% and 3.50% EERs are obtained with 5, 10 and 12
references using WD models, respectively. While 5.91%,
4.91% and 4.59% EERs are obtained with 5, 10 and 12
references using WI models, respectively. On MCYT-75
4.07% and 2.71% EERs are obtained with 5 and 10
references using WD models. 4.97% and 4.07% EERs
are obtained with 5 and 10 references using WI models.

2.2. Online SV. DTW is used to align online signatures
of variable lengths by Kholmatov and Yanikoglu (2005).
They use an SVM, a Bayes classifier and linear
classifier with PCA to obtain a decision boundary
between genuine and forgery signatures. An HMM-based
online SV approach is proposed by Fierrez et al.
(2007). Function-based methods with a rotation alignment
procedure are utilized to represent signatures. They
investigated the impact of the number of states and
Gaussian mixtures per state.

Template signatures are substituted with an artificial
signature called the hidden signature, generated by
minimizing the misalignment between itself and the
training signatures of the writer (Putz-Leszczynska,
2015).

Several artificial neural network architectures have
been investigated in recent studies for online SVSs.
Lai et al. (2017) proposed a novel descriptor, called a
length-normalized path signature. A recurrent neural
network (RNN) is trained with the triplet loss function to
learn a distance metric.

Tolosana et al. (2018), proposed a siamese (Bromley
et al., 1994) architecture with RNNs. First, 23 time
functions are extracted using x and y coordinates and
pressure. Then, bidirectional long-short-term memory
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(BiLSTM) and bidirectional gated recurrent unit (BGRU)
networks are used to make a binary decision given a
signature pair. Another siamese architecture is used in
Ahrabian and BabaAli (2019). A recurrent autoencoder
network is employed to learn WI features. Also, an
attention mechanism is utilized to improve performance.
Use of CNNs (Lecun et al., 1998) with a siamese
architecture is investigated by Vorugunti et al. (2019).
Global features are given to the CNN, showing that even
a shallow network is sufficient to achieve low error rates.

An in-depth analysis of state-of-the-art deep learning
approaches for online SV is provided by Tolosana et al.
(2021), together with DeepSignDB online handwritten
signature biometric public database and a standard
experimental protocol and benchmark. A time-aligned
RNN TARNN is utilized for the task of online SV. The
TA-RNN achieves an EER below 2% with SF impostors
and one reference signature per user on DeepSignDB.

Time-series are transformed into a 2D representation
for online SV by Xie et al. (2022). The channel-wise
weight-learning method is integrated to discover the
relationship between altitude, azimuth, and pressure. Xie
et al. (2023) combine stroke images and sensor signals for
verification using the supervised fusion triplet network.
An existing private dynamic signature dataset is converted
into static and dynamic form for the simulations.

OSVConTramer, a combined CNN and transformer
is utilized for online SV (Vorugunti et al., 2023).
OSVConTramer learns optimal local and global
dependencies of input signature feature vectors. EERs of
10.85%, 5.45% and 6.32% are reported on MCYT-100,
SVC, and SUSIG datasets, respectively.

A teacher-student collaborative knowledge
distillation (TSKD) technique is proposed for online
SV (Sekhar et al., 2023). After training a heavy
transformer-based teacher, teacher knowledge is distilled
into a very lightweight CNN-based student. The teacher
network results in deep representative feature learning
by the student with performance improvement. One-shot
learning results in 12.42%, 6.45% and 11.32% EERs on
MCYT-100, SVC and SUSIG datasets, respectively.

A CNN and a convolutional gated recurrent network
(CGRN) to extract spatial and temporal features have
been combined for online SV (Yu and Shi, 2023). A
cosine similarity for spatial features calculates the shape
similarity and dynamic time warping (DTW) aligns
temporal features. The distance between reference and
query signatures is calculated by multiplying the DTW the
distance and similarity score.

2.3. Mixed online-offline verification. Online
handwriting is utilized for registration instead of
handwritten images (Qiao et al., 2007). The online
registration is supposed to enable robust recovery
of the writing trajectory from offline signature and

allows effective shape matching between registration
and verification signatures. The proposed technique is
reported to achieve comparable performance with online
SV methods; on the other hand, it requires both online and
offline samples from each subject.

Offline training to offline testing, offline training
to online testing, online training to offline testing and
online training to online testing cases are investigated
(Uppalapati, 2007). Completely different handcrafted
features are extracted for offline and online samples.
A feature-level combination is followed to verify the
signatures.

Zimmer and Ling (2008) employ online reference
data acquired through a digitizing tablet as the basis for
the segmentation process of the corresponding scanned
offline data. Gathering online signatures for registration
is mandatory for this system to work.

Features of both online and offline handwritten
signatures are verified separately, combining their results
to verify the signature (Radhika and Gopika, 2015).
Online data consist of the signing process captured using a
webcam and offline data consist of the scanned signatures.
Both the modalities are required for the system to work.
The data set is collected from only 13 different subjects.
The combined approach gives better results than the
compared single-modality systems as expected.

According to recent works, although SV is a
hot research topic, no other work focuses on simple
and similar models that can handle online and offline
modalities from raw data. Recent works that report
promising results in the literature are becoming very
complicated with millions of learnable parameters, thus
demanding huge amounts of training data. At the same
time those models are specially designed for the target
problem, either offline or online SV. We propose to fill
this gap by designing simpler and similar models both
for offline and online SV, still achieving state-of-the-art
results. CNNs are trained from raw data without relying
on handcrafted features both for offline and online data.

3. Proposed method
CNNs have recently shown great performance in
recognition tasks. Features learned for recognition can
also be used for verification. The main problem in SV
is not only classifying genuine signatures of writers but
also detecting SFs that have great resemblance to genuine
signatures.

Feature learning strategies using CNNs for SV can
be categorized into two categories. In the first case, two
signature pairs are given to the CNN in order to measure
similarity. The network is trained to learn genuine
signature pairs of each writer as similar pairs while
random forgeries and SFs can be used to create dissimilar
pairs (Tolosana et al., 2018; Vorugunti et al., 2019; Dey
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Fig. 1. Inputs and outputs for the proposed K +1 CNN models
for representation learning. Each writer in the training
set is labeled separately and one additional class is used
to represent SFs from all writers.

et al., 2017; Yılmaz and Öztürk, 2018). While it can
achieve state-of-the-art results when trained and tested
on the same database, a significant performance drop is
observed for the cross-database experimental procedure
(Dey et al., 2017). It is also important to note that
the requirement of pairs is inefficient for large databases
compared with CNN architectures taking a single image
as input. In the other case, genuine signatures of
writers are categorized into different classes as a standard
N-way CNN training procedure. In addition, SFs can
be treated as separate classes (Yılmaz and Öztürk, 2019)
or an additional loss term can be utilized to detect them
(Hafemann et al., 2017).

In this work, we propose a CNN architecture to learn
a signature representation similar to that of Yılmaz and
Öztürk (2019). Two kinds of models are investigated.
In the first model, SFs are considered as separate classes
as in Yılmaz and Öztürk (2019) resulting in a network
with K × 2 outputs. As an alternative second model,
all SFs are treated as one additional class resulting in
K + 1 outputs using signatures of K writers (Fig. 1).
We hypothesize that forcing the network to consider all
SF created for different writers as one group can help
network to capture generic characteristics of forgeries. As
a result of the K + 1 approach, the model is prevented
from overfitting to writer-specific forgery characteristics
for producing writer-specific forgery outputs.

Moreover, the proposed work applies a simple
strategy for SFs and obviates the need for searching
the values for additional parameter in the loss function
proposed by Hafemann et al. (2017). It is important
to emphasize that SFs that are used in any kind of
model training (WI and WD) are only gathered from
the training set. This is practical because an existing
signature database with SFs can be easily obtained before
the deployment of the system to real users.

Once the network is trained, it is used as a feature
descriptor for the writers in the test and validation sets in

Table 1. List of parameters of RandomResizedCrop.
Parameter Value Parameter Value

Size 150× 220 Scale (0.2, 1)
Ratio (3/4, 4/3) Interpolation Bilinear

a WI way. Then, WD classifiers are employed to detect
forgeries. Experiments are conducted for both offline and
online SV tasks. For offline signature feature extraction
phase, usage of higher resolution at test time than that of
training time, rather is also investigated.

3.1. Feature learning.

3.1.1. Preprocessing. Offline signatures are processed
using a simple procedure (Yılmaz and Öztürk, 2018).
First, gray-level values are inverted by extracting them
from 255, so that background is presented by 0 values.
Then, small components are removed with the assumption
that they are sourcing from noise.

We use a fixed-length pen trajectory (3000) for each
of the observations of (x, y) coordinates and pen pressure
information, representing online signatures with the fixed
size of 3000 × 3. This value is determined from the
observations in the validation set, where the maximum
length is 3552 in an SF and 1156 in a genuine sample.
Only 5 SFs exceed the length of 3000. Each dimension
is normalized so that the maximum and minimum values
become 1 and −1. Smaller lengths are padded with 0
values and signatures having more than 3000 time steps
are cropped.

3.1.2. Data augmentation. RandomResizedCrop
implementation in Pytorch (Paszke et al., 2019) is used
to augment data for offline signatures. Parameters chosen
for augmentation are listed in Table 1, simply to create a
relevant artificial variability. The proposed architecture
also is trained without using data augmentation for
comparison. In this case, the original image is resized to
150× 220 after the preprocessing step. We did not apply
any augmentation procedure for online signatures.

3.1.3. CNN architecture. The proposed CNN
architectures are built as shown in Algorithm 1. A
motivation behind the algorithm is to keep the models
simple and very similar for offline and online SV. The
argument list for constructing offline and online networks
is given in Table 2. Minor differences between the online
and offline models in hyperparameters and structures
result from the difference in input sizes (because of the
representation sizes) and output sizes (because of the sizes
of the training sets K for online and offline models by
which the CNN output size is determined).
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Algorithm 1. CNN architecture.
1: procedure NET(b, kf, k, s, d, p, o)
2: net← []
3: n← 32
4: net.add(conv bn relu(n, kf, p))
5: for i = 1 to b do
6: if d or i in [1, 2, 3, 5, 7] then
7: n← n× 2
8: end if
9: net.add(maxpooling(k, s)

10: net.add(conv bn relu(n, k))
11: net.add(conv bn relu(n, k))
12: end for
13: net.add(gap()) (feature extraction)
14: net.add(fc softmax(o))
15: return net

The sizes of feature maps are reduced by the
max-pooling operation. Stride and padding parameters
of convolutional layers are set to 1 and (k − 1)/2,
respectively, to preserve to input shape except the
first layer of the online network. The dimension of
online signatures is reduced to 3000 × 1 after the first
convolutional layer; then one-dimensional operations are
applied. The number of convolutional filters is set to 32
and increased by a factor of 2 five times. K + 1 outputs
are produced to separate genuine signatures and SFs of K
writers. The same architecture with K × 2 outputs is also
used for comparison.

Networks are trained for 100 epochs using the
Adam optimizer (Kingma and Ba, 2014). Batch
normalization (Ioffe and Szegedy, 2015) is utilized before
each activation function (ReLU). Label smoothing is
applied to prevent the networks becoming over-confident
(Müller et al., 2019). Cross-entropy loss is minimized
using a smoothing factor of α = 0.1,

H(y, p) =

N∑

n=1

−yLS
n log(pn), (1)

where N is the number of classes, yn is 1 for the correct
class and 0 for the rest,

yLS
n = yn(1− α) + α/N. (2)

A scheme depicting the K + 1 architecture both for
online and offline cases is shown in Fig. 2, together with
the number of trainable parameters for each layer. A
sequential-block primitive structure is also shown in the
same figure. The total numbers of trainable parameters
for online and offline models are 10, 319, 633 and
19, 414, 740 accordingly. The total space complexities for
online and offline models are 55.95 MB and 119.50 MB
accordingly. The total number of floating-point operations
(FLOPs) for online and offline models are 570 million

Table 2. List of hyperparameters of Algorithm 1.
Parameter Offline Online Description

b 5 7 number of blocks
kf (7, 7) (7, 3) first kernel size
k (3, 3) (3, 1) kernel size
p (3, 3) (3, 0) zero-padding
s (2, 2) (2, 1) stride

d True False double filters at each
block

o N N number of classes

and 2.44 billion, respectively. For comparison, VGG has
around 19 billion FLOPs and ResNet-34 has around 3.6
billion FLOPs.

3.2. Writer-dependent classification. While the
network can directly be used for writer recognition and
forgery detection on the training set without requiring
any additional classifier, WI or WD classifiers are needed
to verify signatures for a different set of writers. In
the literature, WD classifiers trained for specific writers
have always provided better results than WI classifiers
as expected (Yılmaz and Yanıkoğlu, 2016; Yılmaz and
Öztürk, 2018; Viana et al., 2023). For this reason after
the CNN learns signature representations, two-class WD
SVM classifiers are trained for each writer to accept
(genuine class) or reject (forgery class) query signatures
for the corresponding writer. For offline signatures, a
set of input resolutions from which features are extracted
is used to measure the effect of higher resolution.
Hyperparameters of WD SVM are determined using the
validation set, as described in Section 4.1. Here c-SVM
with radial basis function (RBF) kernel is used to build
WD classifiers. After a brief and coarse grid-search,
the cost is determined as 32 and gamma of the RBF is
determined as 0.125 both for online and offline cases.

4. Experimental protocol
For the implementation of CNNs, the PyTorch library is
used with Python. For the implementation of WD SVMs,
LIBSVM with Matlab is used.

4.1. Offline SV.

4.1.1. Standard setup. Experiments with offline
signatures are conducted on GPDS-960 (Vargas et al.,
2007), CEDAR (Kalera et al., 2004) and MCYT-75
(Ortega-Garcia et al., 2003) databases containing 881,
55 and 75 writers respectively. GPDS-960 is partitioned
into 3 parts, following a very similar protocol to those
in the literature (Hafemann et al., 2017; Yılmaz and
Öztürk, 2018).
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Fig. 2. K + 1 architecture for online and offline cases indicating the number of trainable parameters for each layer.

The training set T consisting of 531 writers in
GPDS-960 (writer indices [351–881]), is used to train
CNNs. SFs from T may or may not be used, where
the two approaches are investigated separately. Two
networks, one with data augmentation (Section 3.1.2) and
the other without augmentation are trained to measure the
effect of the augmentation policy.

The validation set V consisting of 50 GPDS-960
writers (indices [301–350]) is utilized to choose the best
model during training. At every 5 epochs, a linear
SVM classifier is trained to separate 51 classes of V
for the validation purpose. Unlike WD verification of
RBF SVMs, the purpose of the linear SVM is to perform
the writer recognition for CNN validation faster, where
the ultimate goal of the CNN training is to learn feature
representations for SV.

While 5 genuine signatures per writer are used
to learn 50 classes, SFs in T are used to learn the
51st class. The remaining genuine signatures and all
SFs in V are used for evaluating the linear SVM. The
model with the highest accuracy is picked for feature
extraction. Hyperparameters of WD classifiers are
coarsely determined by training and testing on the subsets
of V .

First 300 writers in GPDS-960 (writer indices
[1–300]), all writers in CEDAR and MCYT-75 databases
are used as test set to evaluate the performance. Two-class
WD SVMs are trained for each writer in the test set using
features extracted from the global average pooling (GAP)
layer of the CNN (trained on T ). For cross-validation of
WD SVMs performance, each writer’s genuine samples
in the test set are divided into two parts P1 and P2,

each having 12 distinct samples per writer. Partitioning
is randomly repeated 2 times. Then, r genuine samples
are randomly selected from P1 as reference signatures to
train WD SVMs. The selection of references is randomly
repeated 3 times. Negative samples for training the WD
SVMs are selected from SFs of writers in V , which can be
considered as random forgeries. Note that it is fair to use
other writers’ SFs outside of the test set as one can collect
SFs from some random writer set before seeing any test
subject.

The union of P2 and writer-specific SFs is used as
query samples for each test writer. Here r = 5 and
r = 12 are considered to report the results. In total,
6 (two partitioning, each with three times of reference
selection) tests are performed for r = 5. For r = 12, P1

is completely covered so that there is no random reference
set selection inside the partition, resulting in 2 tests (only
for partitioning). Random forgeries (forgeries from other
writers) are not used during any test.

While the CNN is trained using the fixed 150 ×
220 input size, either directly resized from the original
signature or from the cropped images in case of data
augmentation, we use signatures with a higher resolution
to extract features. Since signature representations are
obtained from the output of the GAP layer, feature
dimensions remain fixed for higher input resolutions.
150 × 220, 200 × 300, 250 × 375 and 300 × 450 are
used for experiments. For 300 × 450, we observed a
direct increase in error rates and did not report results. We
did not perform a detailed investigation to find optimal
resolutions and did not apply any fine-tuning procedure as
opposed to Touvron et al. (2019).
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Unless explicitly stated, all of the experiments follow
this standard setup explained in this section. An overview
of the proposed method demonstrating the protocol is
shown in Fig. 3.

4.1.2. Mixed model setup. For further investigation,
we set up an additional experimentation where we
train the system using samples both from GPDS-960
and GPDSsyntheticOnLineOffLineSignature offline
(GPDSsynthOff).

GPDSsyntheticOnLineOffLineSignature database
(Ferrer et al., 2016) contains 24 genuine and 30 SF
signatures for each of the 10000 synthetic writers both
online and offline. Ts is defined as writers [1001–1531] of
GPDSsynthOff. Vs is defined as GPDSsynthOff writers
[301–1000]. Only a K + 1 output CNN is trained in this
setup. The exact setup for the mixed model case is then
given as follows:

• the training set Tm: Ts ∪ T ,

• the validation set Vm: random samples from Vs ∪ V ,

• the test set: GPDSsynthOff first 300 writers and
GPDS-960 first 300 writers (separately tested on
both sets).

4.1.3. GPDSsynthOff model setup. For the
investigation of the effect of the training set, the
model (K + 1) is inspected with the following setup:

• the training set: Ts,

• the validation set: Vs,

• test set: the same as in Section 4.1.2.

4.2. Online SV. GPDSsyntheticOnLineOffLineSign
database online samples are utilized to conduct
experiments with online signatures, which is abbreviated
GPDSsynthOn. It contains 24 genuine and 30 SF
signatures for each of the 10000 synthetic writers.
Three disjoint sets are used for training, testing and
validation. Three CNNs are trained containing 500,
1000 and 2000 writers in the training set (writer indices
[4001–6000]). 300 (writer indices [1–300]) and 100
(writer indices [2001–2100]) writers are used for
testing and validation, respectively. The same protocol
(Section 4.1) is applied to pick the best CNN model,
determining the hyperparameters of WD SVM verifiers
and cross-validation of WD SVMs.

5. Results and discussion
EER and AUC are used to report the results, calculated
from WD SVM test scores. EERuser and EERglobal

depict the EERs with user-specific and global thresholds,
accordingly. Global thresholds and user-based thresholds

are calculated from the test scores. Mean AUC results
are reported using global thresholds and depicted as Mean
AUCglobal, averaged for AUC values over all test writers.
Table 3 shows the effect of different resolutions at the
feature extraction phase for offline signatures. It can be
seen that for all cases, the proposed architecture K +
1 (all SFs as one class) outperforms K × 2 (SFs as
separate classes) (Yılmaz and Öztürk, 2019). Although
the difference between 200 × 300 and 250 × 375 is not
obvious, the use of the higher resolution than training
leads to better results in all cases.

In Tables 4 and 5 we compare our work with another
signature representation learning method proposed by
Hafemann et al. (2017). Results with 250×375 are shown
for the proposed work. The effect of using SFs from the
training set of the CNN is also reported. When SFs are
not used, the proposed network and that of Hafemann
et al. (2017) are trained with the same objective, i.e., to
classify genuine signatures of 531 writers. It is important
to note that, even though their work achieves lower EERs
when only genuine signatures are considered during the
training of the CNNs, the proposed work yields better
results utilizing SFs, even without data augmentation.
Table 4 shows that the performance gain of the proposed
method not only comes from usage of a higher resolution
or a hyperparameter choice, but also from the learning
strategy.

Close results between models trained with and
without data augmentation can indicate that our resolution
choices for feature extraction are not optimal, and better
results can be achieved via a more detailed search of
resolutions as by Touvron et al. (2019). As shown in
Hafemann et al. (2018), usage of multiple sizes during
training can be considered to lower error rates. They
achieve an EER of 0.41% compared with their base
network (1.69%).

The performance of the proposed method is also
investigated for online signatures in Table 6. 500, 1000
and 2000 synthetic writers are used to learn signature
representations. The K + 1 model achieves lower error
rates than the K × 2 model as in offline results (Table 3).
Compared with the state-of-the-art results (Ahrabian and
BabaAli, 2019), the proposed solution achieves lower
error rates when 2000 writers are used for feature learning,
even though a much simpler architecture is utilized.
The effect of the number of training subjects is also
investigated by Ahrabian and BabaAli (2019) to report
higher accuracy with 150 training subjects than 2000
training subjects. Although we observe close results
between networks trained with 500 and 1000 writers
in some cases, the lowest error rates are obtained with
the training set containing 2000 writers, indicating the
scalability of our learning strategy.

We use t-SNE (Maaten and Hinton, 2008) to
visualize offline signature representations on V .
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Fig. 3. Overview of the proposed method demonstrating the protocol.

Table 3. Test results on GPDS-300 [%].
#
ref.

Resolution
Data
aug.

EERglobal EERuser Mean AUCglobal
K + 1 K × 2 K + 1 K × 2 K + 1 K × 2

5

150× 220
– 3.71± 0.13 5.20± 0.13 2.45± 0.13 3.40± 0.08 98.45± 0.09 97.93± 0.12
� 4.17± 0.15 4.51± 0.09 2.74± 0.13 3.04± 0.14 98.08± 0.11 98.12± 0.10

200× 300
– 3.29± 0.09 4.38± 0.21 1.92± 0.09 2.65± 0.13 98.85± 0.09 98.45± 0.08
� 3.08± 0.12 3.33± 0.12 2.05± 0.18 2.07± 0.12 98.49± 0.12 98.73± 0.12

250× 375
– 3.28± 0.12 4.82± 0.17 1.78± 0.07 2.84± 0.13 99.07± 0.05 98.42± 0.06
� 2.96± 0.09 3.48± 0.14 1.86± 0.11 2.14± 0.13 98.76± 0.08 98.68± 0.10

12

150× 220
– 3.14± 0.46 4.49± 0.07 1.77± 0.21 2.54± 0.27 99.09± 0.08 98.64± 0.11
� 3.31± 0.33 3.73± 0.23 1.92± 0.21 2.21± 0.29 99.01± 0.11 98.88± 0.11

200× 300
– 2.69± 0.23 3.62± 0.12 1.38± 0.15 1.92± 0.26 99.32± 0.11 98.98± 0.05
� 2.56± 0.16 2.93± 0.19 1.30± 0.25 1.46± 0.32 99.22± 0.10 99.31± 0.10

250× 375
– 2.73± 0.25 3.88± 0.35 1.33± 0.13 1.96± 0.49 99.43± 0.13 99.02± 0.18
� 2.28± 0.04 3.03± 0.11 1.12± 0.18 1.54± 0.31 99.34± 0.14 99.21± 0.16

Table 4. Effect of SF usage on training set T for CNN training
on GPDS-300, as compared with SigNet (Hafemann
et al., 2017) [%].

SF EERuser
# ref = 5 # ref = 12

SigNet – 3.92± 0.18 3.15± 0.18
� 2.42± 0.24 1.69± 0.18

Proposed work
w/o aug.

– 7.15± 0.19 6.00± 0.23
� 1.78± 0.07 1.33± 0.13

Proposed work
w/ aug.

– 5.02± 0.13 3.99± 0.35
� 1.86± 0.11 1.12± 0.18

1024-dimensional features are first reduced to a size
of 50 using PCA, then projected onto a 2-dimensional
space. The perplexity value of 30 is used with an exact
gradient calculation algorithm, besides other default
parameters described.1 Three networks trained with data
augmentation are used for comparison. A 250 × 375
image size is used to extract features. t-SNE projections
on V are shown in Fig. 4 for the three approaches,
depicting the significance of the proposed K + 1 model.
SFs are much better separated than the other networks.
While SFs for all writers are clustered as one group in
K × 2, they are separated into small groups in K + 1,
even though an opposite outcome is expected. The reason
behind this phenomenon needs to be investigated.

1scikit-learn.org/dev/modules/generated/sklearn.manifold.TSNE
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Table 5. Test results on CEDAR and MCYT [%].
SF

on CNN training
References

CEDAR / MCYT
EERuser
CEDAR

EERuser
MCYT

(Hafemann et al., 2017)
– 4 / 5 5.87± 0.73 3.58± 0.54

12 / 10 4.76± 0.36 2.87± 0.42

� 4 / 5 5.92± 0.48 3.70± 0.79
12 / 10 4.63± 0.42 3.00± 0.56

Proposed work
w/o aug.

– 5 4.91± 0.36 6.88± 0.44
12 4.41± 0.08 4.02± 0.85

� 5 5.21± 0.33 6.78± 0.38
12 3.88± 0.19 4.04± 1.70

Proposed work
w/ aug.

– 5 5.24± 0.52 6.05± 0.56
12 4.39± 0.11 2.76± 1.38

� 5 4.23± 0.30 5.20± 0.27
12 3.41± 0.11 2.20± 1.54

Table 6. Test results on online samples of GPDSsynthOn [%].
# Subjects
in T

# ref. EERglobal EERuser Mean AUCglobal

K + 1 K × 2 K + 1 K × 2 K + 1 K × 2

500 5 0.19± 0.02 0.91± 0.12 0.06± 0.02 0.29± 0.07 99.94± 0.02 99.81± 0.04
12 0.11± 0.00 0.52± 0.13 0.01± 0.00 0.08± 0.05 99.99± 0.01 99.96± 0.04

1000 5 0.16± 0.03 0.60± 0.06 0.11± 0.02 0.14± 0.04 99.85± 0.03 99.89± 0.03
12 0.10± 0.03 0.30± 0.03 0.06± 0.02 0.06± 0.02 99.92± 0.03 99.96± 0.00

2000 5 0.05± 0.01 0.24± 0.02 0.01± 0.01 0.07± 0.02 100.00± 0.00 99.97± 0.02
12 0.04± 0.01 0.14± 0.01 0.01± 0.00 0.01± 0.00 100.00± 0.00 100.00± 0.00

150 5 – 0.09 (Ahrabian and
BabaAli, 2019) –

Offline SV results of the mixed model and the
GPDSsynthOff model are shown in Table 7. It can be seen
that training the CNN on the mixed set improved the test
results for GPDSsynthOff, compared with only training
on GPDSsynthOff. Only training on GPDSsynthOff
degraded the results for GPDS-960 drastically. Training
on the mixed set degraded GPDS-960 test results slightly
(Table 3, 150× 220, data augmentation, K + 1).

Comparison of the reported results with the literature
can be found in Tables 8 and 9 for offline and online SVs,
respectively. As can be seen from the results, our simple
models can outperform or produce competing results
compared with more complicated recent models present
in the literature. For instance, our model achieves better
results on the GPDS-300 offline dataset while giving
competitive results on MCYT-75. On the other hand, a
similar and simple CNN model that works on raw data
for online SV achieves better results compared with other
works.

For offline SV, our model achieves some of the best
results for the GPDS-300 and MCYT-75. For GPDS-300
12 reference case, Hafemann et al. (2018) report 0.7%
better EER with an approximately doubled number of
parameters. For MCYT-75 and CEDAR, we report results
close to the state-of-the-art although we never specifically

trained for WI feature learning with those datasets. For
GPDSsynthetic, Viana et al. (2023) report better results
with an unknown number of parameters. Even when the
number of parameters is higher compared with another
model, it should be noted that the model is trained
only once and inference is straightforward afterwards.
On the other hand, our online model is similar to and
based on the offline model which copes with images,
needing many parameters. Having more parameters
than in the compared work, our online model achieves
the best results. In summary, our models can provide
state-of-the-art results, usually with fewer parameters.

5.1. Running times. All simulations are performed on
a computer with Intel(R) Core(TM) i7-8750H 2.20GHz
CPU, 32 GB RAM, NVIDIA GeForce GTX 1070 GDDR5
8 GB graphics card and Windows 10 Pro 64 bit operating
system. K + 1 CNN training times are 12548.33
seconds for the online model and 9561.48 seconds for
the offline model. Feature extraction with the CNN takes
approximately 3 milliseconds for one input, file-saving
time included. The total time (training and then testing all
test samples) spent with WD SVM per writer takes 0.60
seconds on the average, both for online and offline cases.
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in CNN training)
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Fig. 4. t-SNE projections on V for different offline models. Genuine signatures are shown as darker and SFs are shown as lighter
points.

Table 7. Offline test results of the mixed and GPDSsynthOff models [%].
Training set Test set # ref. EERglobal EERuser Mean AUCglobal

Mixed
GPDS-960 (300) 5 5.35± 0.16 3.47± 0.07 98.04± 0.14

12 4.47± 0.25 2.71± 0.45 98.69± 0.19

GPDSsynthOff 5 12.92± 0.15 10.24± 0.17 93.24± 0.20
12 9.99± 0.02 7.64± 0.24 95.51± 0.19

GPDSsynthOff
GPDS-960 (300) 5 24.15± 1.07 21.46± 1.04 82.20± 1.28

12 22.00± 0.52 20.26± 0.28 83.74± 0.58

GPDSsynthOff 5 14.22± 0.35 11.58± 0.27 91.96± 0.22
12 11.18± 0.58 9.20± 0.20 94.67± 0.19

Table 8. Offline results comparison with the literature [%].
Method Dataset EER (# ref.s)

SigNet-SPP-F (Hafemann et al., 2018)
(∼37M parameters)

GPDS-300 0.41 (12)
CEDAR 2.33 (10)

CBCapsNet (Parcham et al., 2021)
(4.93M parameters)

CEDAR 0 (5)
GPDS-300 7.06 (5)

R-SigNet (Avola et al., 2021)
(8.75M parameters)

CEDAR 0 (12)
MCYT-75 2.25 (8)

Static feature (Sadak et al., 2022) GPDS-100 9.90 (4)
MCYT-75 11.55 (4)

WI (Longjam et al., 2023)
(43.12M parameters)

CEDAR 0 (WI)
GPDS-300 10.16 (WI)

Feature augmentation (Arab et al., 2023)
CEDAR 5.00 (5)

MCYT-75 8.30 (5)
GPDS-300 7.80 (5)

Multi-task framework (WD) (Viana et al., 2023)
GPDSsynthetic (300) 4.02 (5), 3.33 (12)

CEDAR 4.43 (5), 3.50 (12)
MCYT-75 4.07 (5)

Proposed (WD, K + 1, global threshold) GPDSsynthetic (300) 12.92 (5), 9.99 (12)
GPDS-300 2.96 (5), 2.28 (12)

Proposed (WD, K + 1, writer thresholds)
(19.41M CNN parameters)

GPDSsynthetic (300) 10.24 (5), 7.64 (12)
CEDAR 4.23 (5), 3.41 (12)

MCYT-75 5.20 (5), 2.20 (12)
GPDS-300 1.86 (5), 1.12 (12)
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Table 9. Online results comparison with the literature [%].
Method Dataset EER
OSVConTramer
(Vorugunti et al., 2023)
(188K parameters)

MCYT-100 10.85
SVC 5.45
SUSIG 6.32

TSKD (1 ref.)
(Sekhar et al., 2023)
(6658 parameters)

MCYT-100 12.42
SVC 6.45
SUSIG 11.32

Autoencoders (Ahrabian
and BabaAli, 2019) GPDSsynthOn 0.09

Proposed (WD,
K + 1, global threshold)

GPDSsynthOn
(5 ref.) 0.05

(12 ref.) 0.04

Proposed (same, user thold.)
(10.32M parameters)

GPDSsynthOn
(5 ref.) 0.01

(12 ref.) 0.01

6. Conclusions

In this work, we have shown that simpler and similar
CNN models can still achieve state-of-the-art results
both for offline and online SV while reducing the need
for the amount of training data. For this purpose, a
representation learning method for SV is demonstrated.
Experiments on offline and online signatures show the
effectiveness of the proposed work. The impact of
the higher resolution than the train time resolution is
investigated for offline signatures to extract features. As
can be seen from the results, our representation learning
strategy can outperform its counterparts even without
utilizing data augmentation.

Similar CNN architectures are employed to build
offline and online SVSs. Offline and online signature
representations are directly learned from images and raw
signals respectively, without relying on any handcrafted
feature. While obtaining local and global features from
raw data to feed to a neural network is a common approach
used in recent works, we have shown that CNNs can be
successfully used to learn online signature representations
from sensory information.

Although the siamese architecture is a common
way to detect forgeries, its accuracy dramatically drops
when tested on different databases (Dey et al., 2017).
Additionally, since it requires a pair of signatures as
input, it is not efficient to train a siamese network on
large databases. Our work showed that, in parallel with
Hafemann et al. (2017), learned representations in one
database can generalize successfully to other databases
(Table 5). The proposed simple and similar models
achieve state-of-the-art results for offline and online SV,
reducing the need for more complicated and specialized
models.
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